Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Invited feature article

One-pot synthesis of magnetic graphitic carbon nitride photocatalyst with synergistic catalytic performance under visible-light irradiation

National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, PR China

ARTICLE INFO

Article history: Received 11 August 2016 Received in revised form 21 October 2016 Accepted 6 November 2016 Available online 29 November 2016

Keywords: Hydrothermal method g-C₃N₄-Fe₃O₄ Visible-light Photocatalytic Dye

1. Introduction

In the past 20 years, environmental pollution has received a great deal of attention because there was significantly increasing trend of pollutant emissions to river and sea with the development of global economy. Due to prominent stability, low-cost, and easy separation, semiconductor photocatalysis has emerged as a most promising technology for the degradation of the organic contaminants in wastewater [1]. Recently, many researchers have focused on the research of an efficient semiconductor material with outstanding properties to photodegradation [2–4]. Nanostructured carbon nitride was found to be an intriguing semiconductor material, possessing superior properties comprising high hardness, cracking chemical stability, and good thermal tolerance. Consequently, carbon nitride shows a tremendous potential for energy conversion and environmental renovation [5–10].

Several phases of carbon nitride theoretically exist, containing α , β , cubic, pseudo-cubic, graphitic structure [11]. Among these phases, graphitic carbon nitride (g-C₃N₄) has a layer structure analogous to graphite and is regarded as the most stable one, i.e. it couldn't decompose thermally in air till 600 °C [12,13]. In addition, g-C₃N₄ has many advantages, including easy preparation, nontoxicity, chemical resistance and sensitive visible light catalytic

http://dx.doi.org/10.1016/j.jphotochem.2016.11.012 1010-6030/© 2016 Published by Elsevier B.V.

ABSTRACT

In this study, a magnetically separable $g-C_3N_4$ - Fe_3O_4 composite with the controllable Fe_3O_4 component was successfully synthesized via a one-step facile and economical hydrothermal method. The results showed strong interaction existed between Fe_3O_4 nanoparticles and $g-C_3N_4$ sheets, meanwhile, the prepared composites exhibited superior photocatalytic activity, and high magnetic response, which had a significant effect on recovery and reuse of $g-C_3N_4$ - Fe_3O_4 composites. More importantly, the photocatalysis material could degrade various dyes efficiently under visible-light irradiation and still exhibited an excellent photocatalytic performance after five cycles. Therefore, the $g-C_3N_4$ - Fe_3O_4 composites synthesized by the simple synthesis process, exhibited high magnetic response and excellent photocatalytic performance, and can show broad application prospects in the field of photodegradation. © 2016 Published by Elsevier B.V.

> performance [14,15]. However, there are also some defects for g- C_3N_4 materials, such as (a) low specific surface area, (b) large band gap, weak visible light response and (c) difficult collection [16]. Fortunately, the above drawbacks of g-C₃N₄ would be overcome readily through suitable adulteration, or chemical functionalization, according to the recent literatures. For instance, doped with some nonmetals like B, C, and S, or narrow band-gap semiconductors, absorption range of g-C₃N₄ could be extended significantly [17–20]. When g-C₃N₄ is combined with other semiconductors with narrow band gap, such as Bi₂WO₆/g-C₃N₄ [16], CdS/g-C₃N₄ [21] and CuO_x/g-C₃N₄ [22], heterojunction structures would be induced to dramatically enhance separation efficiency of photo-generated electron-hole pairs, migration rate of surface reactants, and resulting photocatalytic activities under visible light irradiation [23-27]. On the other side, Fe₃O₄ nanoparticles have become an active research area on account of their intrinsic magnetic properties and high conductivity $(1.9 \times 10^6 \text{ S})$ m⁻¹) [28,29], which have facilitated their applications in lithiumion battery [30], drug delivery [31], low-field magnetic separation [32], magnetic resonance imaging [33], and wastewater treatment [34]. Heterostructured catalysts consisting of Fe₃O₄ nanoparticles have exhibited improved properties due to high conductivity of Fe_3O_4 [35] and energy band structure matching (E_{CB} = 1.23 V vs NHE) [36].

> According to the published literatures, $g-C_3N_4$ -Fe₃O₄ composites were usually synthesized by in-situ growth method [37]. However, the Fe₃O₄ loaded on the g-C₃N₄ sheets reunited seriously, which couldn't effectively hinder the recombination of electron–

Corresponding author.
E-mail address: superfine_jw@126.com (W. Jiang).

hole pairs and limit the photocatalytic activity of g-C₃N₄-Fe₃O₄ composites. Herein, we have proposed a one-step facile and economical hydrothermal method for preparing magnetic g-C₃N₄-Fe₃O₄ composites with different Fe₃O₄ content. The photocatalytic performance was evaluated through the experiment of degradation of different dyes including methylene blue (MB), methyl orange, (MO) and rhodamine B (RhB) in the aqueous solution under visible light irradiation [38]. The results proved that Fe₃O₄ nanoparticles were successfully deposited onto the surface of g-C₃N₄-Fe₃O₄, and photocatalytic activity was dramatically enhanced. A possible mechanism of enhanced photocatalytic performance was also investigated. Furthermore, coupling Fe₃O₄ with g-C₃N₄ turned out to be a convenient manner to reclaim the as-obtained photocatalysts from the photocatalytic system using an external magnetic field, enabling reuse in manifold cycles. The proposed approach greatly restrained the gathering of Fe_3O_4 nanoparticles during preparation and recovery.

2. Experimental section

2.1. Materials

Melamine $(C_3N_3(NH_2)_3)$ was purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd., Shanghai, China. Ferric chloride hexahydrate (FeCl₃·6H₂O), sodium acetate (NaAc), and 1,6diaminohexane (C₆H₁₆N₂) were bought from Sinopharm Chemical Reagent Co. Absolute ethylene glycol ((CH₂OH)₂) and ethanol (C₂H₅OH) were purchased from Nanjing Chemical Reagent Co., Ltd., Nanjing, China. All chemicals used in this work were analytically pure and used without further treatment. Deionized water was used as detergent.

2.2. Preparation of $g-C_3N_4$ sheets

The g-C₃N₄ was synthesized via a facile method that melamine was just heated to $550 \,^{\circ}$ C directly for 4 h in a box type furnace under air atmosphere.

2.3. Fabrication of $g-C_3N_4$ -Fe₃O₄ magnetic composites

We prepared g-C₃N₄-Fe₃O₄ composites by a one-step solventthermal method, and the schematic was exhibited in Fig. 1. First, 5 g of 1, 6-diaminohexane, 1 g FeCl₃·6H₂O, and 2 g NaAc were dissolved in 30 mLEG by ultrasound under 50 °C. Then, a certain amount of g-C₃N₄ was added to the above solution and had ultrasonic for 1 h to form a uniform suspension. After that, the resulting suspension was transferred to a Teflon-lined stainless-steel autoclave (50 mL) and heated to $190 \circ C$ for 6 h. The as-prepared $g-C_3N_4$ -Fe₃O₄ was washed several times with deionized water and absolute alcohol after it was cooled to room temperature, and collected by means of external magnetism. Finally, the as-synthesized precipitation was dried in vacuum oven at 30°C for further characterization. For comparison, sole Fe₃O₄ nanoparticles were synthesized by the same process without adding g-C₃N₄. The obtained g-C₃N₄-Fe₃O₄ photocatalysts with Fe₃O₄ mass percent of 10.0%, 19.7%, and 30.8% were entitled CNFO-10.0, CNFO-19.7, CNFO-30.8, respectively. Similarly, the sole g-C₃N₄ was entitled CN, and Fe₃O₄ was entitled FO.

2.4. Characterization

Power X-ray diffraction (XRD) measurement was carried out on a Bruker D8 Advanced diffractometer with Cu K α radiation (λ = 0.154 nm, 40 kV) at 10–80°. The morphology of the products aforementioned was observed via scanning electron microscopy

Fig. 1. Schematic illustration of the synthesis of g-C₃N₄-Fe₃O₄ photocatalysts.

Download English Version:

https://daneshyari.com/en/article/4754129

Download Persian Version:

https://daneshyari.com/article/4754129

Daneshyari.com