Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

CrossMark

journal homepage: www.elsevier.com/locate/jphotochem

Effect of ascorbic acid on the photolysis of cyanocobalamin and aquocobalamin/hydroxocobalamin in aqueous solution: A kinetic study

Iqbal Ahmad^a, Kiran Qadeer^{a,*}, Ambreen Hafeez^b, Saima Zahid^a, Muhammad Ali Sheraz^a, Saif ur Rehman Khattak^c

^a Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
^b Department of Biochemistry, Dow University of Health Sciences, Ojha Campus, Karachi 75200, Pakistan
^c Central Drug Laboratories, Ministry of Health, DRAP, Block–B, S.M.C.H.S, Karachi 74400, Pakistan

ARTICLE INFO

Article history: Received 26 April 2016 Received in revised form 3 August 2016 Accepted 3 August 2016 Available online 4 August 2016

Keywords: Cyanocobalamin Hydroxocobalamin Ascorbic acid Photolysis Kinetics

ABSTRACT

The photolysis of cyanocobalamin (B₁₂) and aquocobalamin (B_{12a})/hydroxocobalamin (B_{12b}) in the presence of ascorbic acid (AH₂) at pH 2.0–12.0, under aerobic conditions, has been studied. It follows first–order kinetics and the values of apparent first–order rate constants (k_{obs}) at pH 2.0–12.0 range from 0.37 to 2.63 × 10⁻⁴ s⁻¹ and 0.21–6.35 × 10⁻⁴ s⁻¹, for B₁₂ and B_{12a}/B_{12b}, respectively. The second–order rate constants (k_2) for the photochemical interaction of AH₂ and B₁₂ and AH₂ and B_{12a}/B_{12b} range from 0.20 (pH 2.0) to 1.09×10^{-2} M⁻¹ s⁻¹ (pH 5.0) and 5.88 (pH 2.0) to 91.08×10^{-2} M⁻¹ s⁻¹ (pH 5.0), respectively. The values of the k_2 for AH₂–B_{12a}/B_{12b} interaction are 30–80 times greater than those of AH₂–B₁₂ suggesting a greater susceptibility of B_{12a}/B_{12b} to photodegradation compared to that of B₁₂ in this pH range. The k_2 –pH profiles for both B₁₂ and B_{12a}/B_{12b} are bell–shaped curves indicating the effect of AH₂ ionization on the rates of interaction. The complete discoloration of B₁₂ and B_{12a}/B_{12b} solutions on prolonged photolysis indicates the formation of corrin ring cleavage (oxidation) products in acid and alkaline solutions. These oxidation products do not absorb in the visible region. Reaction schemes for the mode of photodegradation of B₁₂ and B_{12a}/B_{12b} in the presence of AH₂ have been presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cyanocobalamin [α -(5,6-dimethylbenzimidazol-1-yl) cobamide cyanide] (vitamin B₁₂) (B₁₂) (1) is sensitive to light [1-3] and is degraded to hydroxocobalamin [Co α -[α -(5,6dimethylbenzimidazolyl)]-Co β -hydroxocobamide] (vitamin B_{12b}) (B_{12b}) (2) (Fig. 1) and further products in aqueous solution [4-6]. The photochemical behavior of B₁₂ has been under study since it isolation in 1948 [7]. The earlier studies on the photolysis of B₁₂ [8-18] indicated its loss on exposure to light, formation of B_{12b} and its further degradation to oxidation products by corrin ring cleavage of the molecule. Further studies of the effect of nicotinamide [19] and riboflavin [20,21] on the photolysis of B₁₂ confirmed the formation of B_{12b} in the reaction. B_{12b} is also susceptible to photolysis [4,6,14,16,17], giving rise to unknown oxidation products. Hydroxocobalamin (B_{12b}) exists in equilibrium

$$Co_{B_{12b}}^{3+}OH] \xrightarrow[OH^-;pKa=7.8]{H^+} [Co_{B_{12a}}^{3+}OH_2]^+$$
(1)

A recent study of the effect of ascorbic acid on the chemical degradation of B_{12} [25] showed the formation of a colorless solution that may result from the compounds formed by the cleavage of corrin ring nucleus [26], and absorbing in the UV region.

In the absence of oxygen the photolysis of an aqueous solution of B₁₂ coenzyme (5'-deoxyadenosylcobalamin) yields reduced cobalamin [B_{12r}] containing bivalent [Co²⁺] and CN[•] radical by homolytic cleavage [27].

http://dx.doi.org/10.1016/j.jphotochem.2016.08.004 1010-6030/© 2016 Elsevier B.V. All rights reserved.

with aquocobalamin (B_{12a}) in aqueous solution [18]. The notation B_{12a} and B_{12b} for these compounds has been used in the literature [22–24].

⁶ Corresponding author.

E-mail address: krn_qdr@yahoo.com (K. Qadeer).

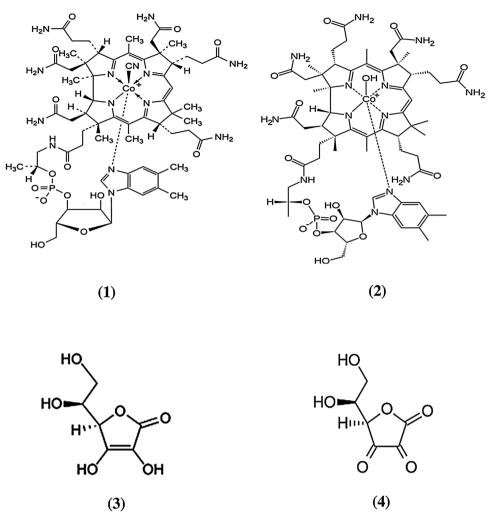


Fig. 1. Chemical structures of cyanocobalamin (1), hydroxocobalamin (2), ascorbic acid (3) and dehydroascorbic acid (4).

Alkyl–cobalamins such as methylcobalamin (MC) also, on photolysis, undergo homolytic Co–X bond cleavage to form B_{12r} and CH_3^{\bullet} radical [28–30].

$$\begin{bmatrix} Co^{3+}CH_3 \end{bmatrix} \xrightarrow{h\nu} \frac{\begin{bmatrix} Co^{2+} \end{bmatrix}}{B_{12r}} + CH_3^{\bullet}$$
(3)

In the case of B_{12} the Co—–CN bond does not photo–dissociate under simple photon excitation [31].

The fate of $[Co^{3+} OH] (B_{12b})$ on exposure to light of wavelength <350 nm is given by the reaction leading to the formation of $[Co^{2+}]$ and an OH[•] radical [32].

$$[\mathrm{Co}^{3+}\mathrm{OH}] \xrightarrow{n\nu} [\mathrm{Co}^{2+}] + \mathrm{OH}^{\bullet}$$
(4)

However, this does not apply to the photolysis of B_{12b} on exposure to light at wavelength >350 nm [33].

The photooxygenolysis of B_{12} in methanolic solution (CD₃OD) leads to the formation of two isomeric dioxosecocorrins by a regioselective oxygenolytic cleavage of the corrin macrocyclic ring [34].

Ascorbic acid (vitamin C) (AH₂) (3) is known to enhance the rate of chemical degradation of B_{12} [25,26,31,35–39], probably by promoting the formation of [Co²⁺], the reduced form of B_{12} in the presence of a reductant [40]. The primary degradation product of AH₂, dehydroascorbic acid (DHA) (4) (Fig. 1), does not exert any

effect on the oxidation of $[Co^{2+}]$ [41]. So far the effect of AH₂ on the photolysis of B₁₂ has not been reported. The present work is aimed to study the kinetics of photolysis of B₁₂ and B_{12a}/B_{12b} in the presence of AH₂ in a wide pH range, to develop rate–pH relationships and determine the range of pH sensitivity of these compounds. The study would throw light on the photostability profile of B₁₂ and B_{12a}/B_{12b}, their mode of interaction with AH₂ and subsequent photolysis reactions. It would have an impact on the stability of B₁₂ in vitamin preparations.

2. Experimental

2.1. Materials

Cyanocobalamin (B_{12}) , hydroxocobalamin (B_{12b}) , ascorbic acid (AH_2) and dehydroascorbic acid (DHA) were obtained from Sigma-Aldrich. All reagents and solvents were of the purest form available from Merck. The following buffer systems were used throughout the work.

(a) For photolysis reactions:

KCl-HCl (pH 2.0), citric acid-Na₂HPO₄ (pH 2.5-8.0), H₃BO₃-KCl-NaOH (pH 9.0-10.0) and Na₂HPO₄-NaOH (pH 11.0-12.0).

The ionic strength was 0.002 M in each case.

(b) For assay of B_{12} and B_{12a} (B_{12b} exists as B_{12a} at pH 4.0): CH₃COOH-CH₃COONa, 0.2 M (pH 4.0)

Download English Version:

https://daneshyari.com/en/article/4754198

Download Persian Version:

https://daneshyari.com/article/4754198

Daneshyari.com