
FISEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Invited feature article

Mixed α -Fe₂O₃/Bi₂WO₆ oxides for photoassisted hetero-Fenton degradation of Methyl Orange and Phenol

C. Jaramillo-Páez^a, J.A. Navío^{a,*}, M.C. Hidalgo^a, Asmae Bouziani^b, Mohammed El Azzouzi^b

- a Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
- ^b Department of Chemistry, Faculty of Sciences Rabat, University Mohammed V, 4 Avenue IBN Battouta B.P. 1014 RP, Rabat, Morocco

ARTICLE INFO

Article history:
Received 27 May 2016
Received in revised form 28 September 2016
Accepted 30 September 2016
Available online 1 October 2016

Keywords:
Bismuth tungstate
Iron oxide
Photocatalysis
Photo-Fenton
Phenol
Dyes
Hydroxyl radicals

ABSTRACT

Mixed oxides, α-Fe₂O₃/Bi₂WO₆, were prepared using a mechanical mixing procedure by adding to the Bi₂WO₆ previously obtained by hydrothermal method the corresponding amount of a prepared α -Fe₂O₃. the latter obtained by thermal decomposition of Fe(NO₃)·9H₂O. The physicochemical surface, structural, morphological characteristics and optical properties of the samples, single and mixed, were determined by BET, XRD, FE-SEM, XPS and UV-vis diffuse reflectance spectroscopy. UV-vis diffuse reflectance spectra showed that incorporating a 5%wt. of α -Fe₂O₃ to the corresponding amount of Bi₂WO₆ sample broadened the visible light absorption of Bi₂WO₆ as expected. The photocatalytic activity, of single and mixed catalysts, to degrade a selected dye such as Methyl Orange (MO) as well as the transparent substrate Phenol (Ph) was studied, in aqueous medium (pH ≈ 5.5) under UV and sun-like illumination conditions in the absence and presence of H₂O₂. In the present study the use of a α-Fe₂O₃-Bi₂WO₆/H₂O₂ system demonstrate much higher photocatalytic efficiency to degrade both MO and Ph than pristine Bi₂WO₆or α -Fe₂O₃, single or mixed. Using the system α -Fe₂O₃-Bi₂WO₆/H₂O₂, around 85% of MO was degraded in 60 min under sun-like illumination whereas 100% was degraded in 60 min under UV-illumination. However, just around 30% of Ph was degraded in 120 min in the α -Fe₂O₃-Bi₂WO₆/H₂O₂ system under sunlike illumination whereas around a 95% was degraded in 90 min under UV-illumination. Under UVillumination, the generation of hydroxyl radicals is favorable; whereas under sun-like illumination, only the small fraction of the UV can produces the OH. Under illumination, the H2O2 could react with photoinduced electrons from the photocatalysts leading to the production of hydroxyl radicals (*OH). © 2016 Elsevier B.V. All rights reserved.

1. Introduction

The increase of industrial activities has become a serious problem that leads to the augmentation of pollution in air, water and soil. To face this problem, the scientific community works to find new methods to undo the contamination. During the past few decades, a variety of practical strategies have been implemented to develop viable wastewater treatment technologies [1–6].

Those technologies are very appealing alternatives for the degradation of organic pollutants because they permit a partial or complete mineralization of pollutants. It is based on the production of the very reactive and nonselective entities (particularly the hydroxyl radicals *OH) having a higher oxidizing capacity than traditional oxidants (O₂, Cl₂, ClO₂, H₂O₂, O₃...) [7–9].

* Corresponding author. E-mail address: navio@us.es (J.A. Navío). Photocatalytic degradation of organic pollutants to purity wastewater from industries and household has received extensive attention in recent years. In particular, heterogeneous photocatalysis shows promising potential in depth-oxidation of pollutants to non-toxic inorganic molecules at ambient temperature [10].

Dyes are molecules commonly found in real effluents from textile and other industrial wastewaters [11,12]. Dyes are major organic pollutants, which can cause severe environmental disruption and health damages [13]. Similarly, phenol is one of the most abundant pollutants in industrial wastewaters and its toxicity, carcinogenicity and persistence, makes this compound dangerous for life at rather low concentrations. In this sense, heterogeneous photocatalysis, among a group of available technologies known as advanced oxidation processes (AOPs), is an important alternative to remove a wide range of organic compounds, including phenols and dyes, in polluted streams. Other technologies as Fenton and Photo-Fenton have been successfully used in depollution of water [14–18].

To meet the requirement of future environmental applications, in the field of AOPs, it is still essential to not only further improve the photocatalytic activity by synthesizing new photocatalysts but also to explore new combined processes.

The development of new photocatalysts is attracting vast interest. Among them the Bismuth tungstate (Bi_2WO_6) is a typical n-type direct band gap semiconductor with a band gap of 2.8 eV and has prospective applications for the degradation of organic pollutants under visible light illumination due to their low valence band and high chemical stability [19]. In the same context, iron oxide (α -Fe₂O₃, hematite) with a narrow band gap at 2.2 eV, absorbing the light up to 600 nm and collecting about 40% of the solar spectrum energy, is also another of the promising materials for photocatalytic applications [20].

 $\rm H_2O_2$ is a distinctive oxidative agent and has been frequently used in practical water treatment, because it's a very common source of very active hydroxyl radicals ($^{\bullet}OH$) by its decomposition after being illuminated with ultraviolet (UV) light. The use of $\rm H_2O_2$ in photochemical processes (UV/ $\rm H_2O_2$) and UV ($\rm H_2O_2$ / $\rm Fe^{3+}$ (PhotoFenton)) has been investigated [1,21–24], however, long periods of UV-illumination are required, thus poor degree of mineralization is obtained, making all these processes not perspectives as potential methods for wastewater purification.

From another perspective, as an electron capture agent, H_2O_2 can also react with photogenerated electrons, from a photocatalytic process, to produce hydroxyl radicals (*OH) as established in Eqs. (1) and (2) in which (SC) is a general semiconductor photocatalyst [25].

$$(SC) + h\nu \rightarrow (SC)(e^{-}_{CB} + h^{+}_{VB}) \text{ (light absorption)}$$
 (1)

$$(H_2O_2) + e^-_{CB} \rightarrow {}^{\bullet}OH + OH^-$$
 (2)

$$(H_2O) + h^+_{VB} \rightarrow {}^{\bullet}OH + H^+$$
 (3)

The formation, the adsorption and the degradation of H_2O_2 on different samples (TiO_2 and ZnO) have been investigated to better understand its participation in the photocatalytic reactions [26]. In a typical $UV/H_2O_2/TiO_2$ system, the active radical formation can arises not only from the direct UV-photolysis which takes place through a homolytic process ($H_2O_2 + hv \rightarrow 2$ °OH) but also from the photocatalytic ones (Eqs. (1)–(3)).

Thus, if the photocatalyst only absorbs in the UV region, then the hydroxyl radicals photogeneration, during the combined photochemical process $UV/(SC)/H_2O_2$, can take place not only by the homogeneous photolytic decomposition of H_2O_2 , but also according to the processes indicated in Eqs. (1) and (2). But if the photocatalyst absorbs in the visible region, the generation of hydroxyl radicals (OH $^{\bullet}$) would be expected to occur, under visible illumination, by the photogenerated electron capture of H_2O_2 , since the photolytic decomposition of H_2O_2 requires shorter wavelengths [1].

The generation of $\rm H_2O_2$ and hydroxyl radicals on $\rm Bi_2WO_6$ for phenol degradation under visible light has been reported [27]. From this work, Authors concluded that the observed organic degradation over the irradiated $\rm Bi_2WO_6$ in aerated aqueous solution is due to the production of $^{\bullet}OH$ and $\rm H_2O_2$.

Both photocatalysts, Bi_2WO_6 and α - Fe_2O_3 , display potential catalytic activity to many chemicals organic degradation under conditions of sun-like illumination. However, due to the high recombination rate of photogenerated charge carriers, the ability is thereof limited. Various strategies, such as heterostructured constructing are being developed [28–30].

The aim of this work is not focused on developing a α -Fe₂O₃/Bi₂WO₆ heterostructure, but to use a physical mixture of both materials and explore their photochemical activity in the presence or absence of H₂O₂ in the degradation of two selected substrates.

Therefore, when H_2O_2 is co-present with single or physically mixed Bi_2WO_6 and α -Fe $_2O_3$, different activities could be displayed because, parallel to the mechanism of homogeneous degradation by hydroxyl radicals photogenerated by H_2O_2 , the effect generated by the intrinsic photocatalytic activity of single or mixed systems is also expected to occur.

Methyl Orange (MO) and Phenol (Ph) are used to imitate non biodegradable, toxic organic compounds. The photocatalytic activity, under UV or sun-like Illumination, of $\alpha\text{-Fe}_2\text{O}_3$, Bi $_2\text{WO}_6$ and mixed $\alpha\text{-Fe}_2\text{O}_3/\text{Bi}_2\text{WO}_6$ samples, to Methyl Orange and Phenol degradation, in the absence and presence of H_2O_2 is reported.

2. Experimental details

2.1. Preparation of α -Fe₂O₃, Bi₂WO₆ and mixed α -Fe₂O₃/Bi₂WO₆ samples

All the reagents used in this procedure were analytical grade without further purification. The detailed synthesis procedure for single $\alpha\text{-Fe}_2O_3$, Bi_2WO_6 and mixed $\alpha\text{-Fe}_2O_3$ / Bi_2WO_6 sample was as follow: The iron oxide was prepared by drying iron(III) nitrate nonahydrate Fe(NO_3)·9H_2O at 120 °C for 2 h then submitting the samples to a further calcinations treatment at 300 °C for 2 h.

The Bi $_2$ WO $_6$ was prepared according to the method previously described [31] by dissolving 4.85 g of Bi (NO $_3$) $_3\cdot$ 5H $_2$ O in 10 mL of glacial acetic acid, and 1.7 g of Na $_2$ WO $_4\cdot$ 2H $_2$ O in 90 mL of distilled water, then those two solutions were mixed forming a white suspension (pH \approx 2), which was kept under stirring for 1 h. The white suspension was transferred into a Teflon recipient inside a stainless steel autoclave. The hydrothermal treatment was done at 140 °C for 20 h, and then the precipitate was filtered, washed and dried overnight at 120 °C. Finally the sample was submitted to a calcination treatment at 300 °C for 4 h.

The α -Fe₂O₃/Bi₂WO₆ mixed samples were obtained with a mechanical mixing in agate mortar, by adding the prepared α -Fe₂O₃ to the corresponding amount of Bi₂WO₆ for a 5 wt.% of iron oxide in the mixture. This sample will hereafter be named as BW-Fe(5)-2 indicating a 5% of iron oxide and that Bi₂WO₆ was prepared at pH = 2.

2.2. Characterization of the photocatalysts

BET surface areas (S_{BET}) of all samples were evaluated by N_2 adsorption measurement with a Micromeritics ASAP 2010 instrument. Degasification of the samples was performed at 150 °C for 30 min in He flow.

Crystalline phase composition of the samples was estimated by X-ray diffraction (XRD). XRD patterns were obtained on a Siemens D-501 diffractometer with Ni filter and graphite monochromator using Cu K α radiation.

The morphology for all the samples was analyzed by field Scanning electron microscopy (FE-SEM) using a Hitachi S 4800 microscope.

Light absorption properties of the samples were studied by UV–vis spectroscopy. The Diffuse Reflectance UV–vis Spectra (UV–vis DRS) were recorded on a Varian spectrometer model Cary 100 equipped with an integrating sphere and using BaSO₄ as reference. Band-gaps values were calculated from the corresponding Kubelka–Munk functions, $F(R\infty)$, which are proportional to the absorption of radiation, by plotting $(F(R\infty)\times h\nu)^{1/2}$ against $h\nu$.

X-ray photoelectron spectroscopy (XPS) studies were carried out on a Leybold-Heraeus LHS-10 spectrometer, working with

Download English Version:

https://daneshyari.com/en/article/4754250

Download Persian Version:

https://daneshyari.com/article/4754250

<u>Daneshyari.com</u>