
The service overlay network design problem for interactive
internet applications

Yuh-Rong Chen a, Sridhar Radhakrishnan a, Sudarshan Dhall a, Suleyman Karabuk b,n

a School of Computer Science, The University of Oklahoma, Norman, OK, USA
b School of Industrial & Systems Engineering, The University of Oklahoma, Norman, OK, USA

a r t i c l e i n f o

Available online 24 November 2014

Keywords:
Network design
Large scale optimization
Interactive network application
Service overlay network
Communication network

a b s t r a c t

Consider a private network of geographically dispersed computers with fast and high capacity
connections, and an Internet application session, such as a massive multiplayer online game, with a
server and a set of clients. We refer to the former as a service overlay network (SON), and assume that it
could be connected to the Internet. The problem is to decide how to configure and utilize the SON in
support of this application, such that the clients' speed of communication with the server is within given
communication performance requirements.

We provide an Integer Programming formulation of this problem, and prove that it is NP�Hard. In
an attempt to solve the problem within strict computational time requirements of actual applications,
we develop a solution framework based on partitioning and enumerating the solution space into smaller
subproblems, one or more of which contains an optimal solution. In this framework, we develop and test
an optimal seeking exact, and a fast polynomial time heuristic algorithm with success. The exact
algorithm sets optimally solvable sizes of the subject problem, whereas the heuristic algorithm sets the
size of solvable instances in a real application.

Published by Elsevier Ltd.

1. Introduction

Network applications that involve a large number of users who
participate in a communication session have become more pop-
ular today with the availability of affordable high-speed Internet.
Some of these applications are interactive, meaning that two-way
communication takes place between users, such as distributed
multimedia collaboration [13], networked audio/video confer-
ences [11,18], multiplayer online games [2,3,23,27] (including
online virtual worlds [7]), and online auctions [29]. Whereas some
are non-interactive such as Internet radio, and movie streaming.
This research is concerned with interactive network applications,
where participation takes place over the Internet.

A multiplayer online game is arguably the most widely utilized
application type thanks to the pervasive availability of game consoles
with Internet capability such as Xbox or PlayStation and their
corresponding online multiplayer gaming services, which have
enabled a wide-range of individuals to participate in a game. It is
also the largest application type with a number of participants
reported to be as many as 4000 [21], although a typical session

within a game is usually limited to several hundreds. For ease of
exposition, throughout the rest of the manuscript we will utilize a
multiplayer online game (MOG) application as context when needed.

Consider p users involved in a MOG session. In order to keep a
consistent view of the common virtual world, every user (or
client)1 sends its updates such as locations or actions, in the
format of network packets, to other users and receives updates
from others. As illustrated in Fig. 1, there are two major network
models to facilitate this interaction: centralized (or client–server),
where all communications from users are routed through a server,
and decentralized (or Peer-to-Peer), where users communicate
directly without any central coordinator.

In the centralized model (Fig. 1a), a global state of the common
virtual world is maintained by the central server S. The users send
their updates to S, which in turn restores the order of these
updates, computes the new global state, and sends global state
updates to affected users. On the other hand, a replication of the
global state is maintained by each user in the decentralized model
(Fig. 1b). The users exchange their updates directly and utilize

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.11.003
0305-0548/Published by Elsevier Ltd.

n Corresponding author.
E-mail address: karabuk@ou.edu (S. Karabuk).

1 To be precise, the term client is the computing device involved in the
application and user is the entity that controls the client. We will use these two
terms interchangeably in the paper but readers should be able to distinguish them
from the context.

Computers & Operations Research 57 (2015) 73–82

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.11.003
http://dx.doi.org/10.1016/j.cor.2014.11.003
http://dx.doi.org/10.1016/j.cor.2014.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.11.003&domain=pdf
mailto:karabuk@ou.edu
http://dx.doi.org/10.1016/j.cor.2014.11.003
http://dx.doi.org/10.1016/j.cor.2014.11.003


more complex algorithms to restore the order of the events before
computing the new global state. The decentralized model is
known to be less scalable due to the lack of a centralized control
[16]. The focus of this research is on the design of centralized
networks.

During a MOG session a player performs an action using input
devices. This action must take effect within a short period of time,
otherwise users may stop playing and leave the game [10]. The
time difference between when an action is performed and when it
takes effect is called the perceived latency, most of which is
attributable to the network (i.e. the Internet) latency. An update
needs to travel to the central server and the corresponding global
state update comes back to the users over the Internet. The
perceived latency can be roughly estimated as twice of the
network latency from a user to the central server. Therefore, the
duration of perceived latency, which must be set to an acceptable
value and be satisfied for all players, is one critical performance
measure of the application [12]. Henceforth, we refer to this
consideration as the delay.

Consider a MOG session with the central server S and two users
A and B, such that the network delay from A to S is significantly
shorter than that from B to S. At some point of the game session, A
and B find some desirable object (e.g. some powerful weapon)
about the same time, and they both attempt to grab it simulta-
neously. To do this, both players need to send a state update to S.
Since the delay from A to S is shorter, S will receive A's packet first
and allow A to pick up the object. Later, when S receives the packet
from B, it will deny B's state update request because the object is
no longer available. Furthermore, as long as B's delay is signifi-
cantly longer than that of A's, B will be at a permanent disadvan-
tage in the competition against A.

Another example can be observed in an online auction, where
many users place (automated) bids for an item in a short amount
of time, for example during the last few seconds of the auction. A
user who receives updates of the currently maximum bid dis-
proportionately faster than the others would have an information
advantage that can be exploited to win the auction. Therefore, the
magnitude of variation in delay among users is another critical
performance metric, specifically in applications where competi-
tion is a major element. Henceforth, we refer to this consideration
as the delay variation.

We adapt the definition of delay variation as the difference
between the maximum delay and the minimum delay between all
pairs of users, as was first mentioned in [25]. Approaches for
reducing the delay variation, such as finding alternative paths in
the computer network or packet buffering in the server, are
presented in [5,25].

The maximum acceptable levels of the delay and the delay
variation vary from application to application, even under different
scenarios within the same application. For example, “raiding” in a

massive MOG (wherein a large amount of users assemble at a
location to perform fast-paced game actions) has more stringent
delay requirements in comparison to actions involving one player
simply roaming and exploring in the game world.

In a typical application, the delay can vary greatly depending on
where and when a user connects to the Internet, the routing policy
of the user's Internet Service Provider, and the location of the
server on the Internet. None of these factors that effect delay can
be controlled or mitigated easily, which leads to the utilization of
so called service overlay networks that we discuss next.

1.1. The service overlay network approach

It is a well established approach to utilize a private computer
network of servers that are interconnected by low latency, high
speed, and high capacity links in support of interactive Internet
applications [1,14,26,28]. The main idea is that both the users of
the network application, and the server connect to this private
network via the Internet, after which all communication takes
place through the fast private network. This private network is
named as a service overlay network (SON).

As depicted in Fig. 2, in the proposed system, a user's delay
consists of three parts: (1) the delay from the user to the SON
server that the user connects to (the contact server), which takes
place over the Internet, (2) the delay from the contact server to the
SON server that the application server connects to (the root
server), which takes place over the SON; (3) delay from the root
server to the application server, which takes place on the Internet.

Therefore, bypassing the slow Internet via the SON, the
performance of an interactive Internet application can be con-
trolled and improved significantly. The first delay component can
be minimized by selecting contact servers, and an assignment of
users to the selected contact servers; the third delay, similarly, can
be minimized by selecting a root server close to the application
server. The second delay component can be affected by selecting a
configuration of the SON including number and location of servers
and the links in between. In this decision problem the constraints
are to satisfy the delay, and the delay variation requirements, with
the objective of minimizing the size of the SON, hence the total of
set up and operating costs.

Another notable benefit of a SON is that the servers can be
configured to conserve bandwidth via application layer multi-
casting [4,19,24], much more effectively than possible compared to

5

S

P

P1

P

PP

2

34

5P

P1

P

PP

2

34

Fig. 1. Two communication models of interactive network applications. (a) Cen-
tralized and (b) decentralized.

Application Server

Internet Node
SON Server

User

P2

P3

P4

P6

P7

P8

P1

P5

S1

S2

S3

S4

S5

S6

Fig. 2. Service overlay network.

Y.-R. Chen et al. / Computers & Operations Research 57 (2015) 73–8274



Download English Version:

https://daneshyari.com/en/article/475444

Download Persian Version:

https://daneshyari.com/article/475444

Daneshyari.com

https://daneshyari.com/en/article/475444
https://daneshyari.com/article/475444
https://daneshyari.com

