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a b s t r a c t

This paper focuses on the capacitated minimum spanning tree (CMST) problem. Given a central
processor and a set of remote terminals with specified demands for traffic that must flow between
the central processor and terminals, the goal is to design a minimum cost network to carry this demand.
Potential links exist between any pair of terminals and between the central processor and the terminals.
Each potential link can be included in the design at a given cost. The CMST problem is to design a
minimum-cost network connecting the terminals with the central processor so that the flow on any arc
of the network is at most Q. A biased random-key genetic algorithm (BRKGA) is a metaheuristic for
combinatorial optimization which evolves a population of random vectors that encode solutions to the
combinatorial optimization problem. This paper explores several solution encodings as well as different
strategies for some steps of the algorithm and finally proposes a BRKGA heuristic for the CMST problem.
Computational experiments are presented showing the effectiveness of the approach: Seven new best-
known solutions are presented for the set of benchmark instances used in the experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Minimal spanning trees are among the most studied structures
in combinatorial optimization. From a theoretical point of view,
the interest of studying minimum-cost spanning trees (MSTs) lies
in their particularity as mathematical objects. Due to its matroid
structure, a MST can be found in polynomial time with greedy
algorithms, like the ones of Prim [40] or Kruskal [32]. From a
practical point of view, the connectivity property of MSTs is very
useful in multiple applications. For this reason, along with the
traveling salesman problem (TSP), MSTs problems are considered
to lie in the core of network systems design and of a wide variety
of scheduling and routing applications.

Often, TSPs and MST problems take into account additional
restrictions, being capacity constraints among the most frequent ones.
The problem that consists of finding an MST that satisfies additional
capacity constraints is called the Capacitated Minimum Spanning Tree
(CMST) problem. From now on, we will refer to this problem simply as

the CMST. The study of the CMST is of interest because the mere
addition of capacity constraints transforms the MST into an NP-hard
problem. The CMSToften arises in telecommunication network design,
but it also has applications in distribution, transportation, and logistics.
For example, it is related to vehicle routing problems, due to the
influence that MSTs have in constructive heuristics: the TSP heuristic
of Christofides [10] is based on spanning trees and similar heuristics
were developed for arc routing problems in Frederickson et al. [13]
and Frederickson [12]. Because vehicle routing problems usually
consider capacity constraints, the design of more effective or efficient
algorithms for the CMST can also play a role in the design of efficient
methods to obtain feasible solutions for the capacitated vehicle routing
problem. Amberg et al. [4] showed that it is possible to transform a
multicenter capacitated arc routing problem (M-CARP) into a capaci-
tated minimum spanning tree with additional arc constraints.

Many authors have proposed integer programming formulations
for the MST and its extensions [5,23–29,31,49]. For the particular
case of the CMST, lower bounds can be found in Gavish [14–16],
Gouveia [24], and Uchoa et al. [55]. To date, the most successful
exact method is the one of Uchoa et al. [55]. However, due to its NP-
hard nature (see [39]) the solution of the CMST with exact methods
is usually very time consuming and even impossible, already for
moderate size instances. This explains why heuristic methods, based
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on the greedy paradigm [11,9,17], neighborhood exploration
[3,50,1,2,51], or dynamic programming [30], have been widely used.
More recent heuristics include the second-order algorithm of Martins
[34], in which subproblems of the original problem including a set of
constraints are solved with the EssauWilliams heuristic, the heuristic
of Rego et al. [44], which projects dual solutions into the primal
feasible space and obtains primal feasible solutions by simple tabu
searches and metaheuristics such as the ant colony algorithm by
Reimann and Laumanns [45] or the filter-and-fan algorithm by Rego
and Mathew [43].

In this paper we propose a biased random-key genetic algorithm
(BRKGA) for the CMST, which stems from the Ph.D. Thesis of E. Ruiz
[49]. BRKGA is a metaheuristic for combinatorial optimization first
proposed in Gonçalves and Resende [19]. A BRKGA evolves a popula-
tion of random vectors that encode solutions to the combinatorial
optimization problem. BRKGA heuristics have been used to tackle a
wide range of problems, such as traffic congestion [8], telecommunica-
tions [7,38,46,47], container loading problems [20], scheduling [36,21],
and arc routing [33]. In many of these applications, BRKGA was shown
to produce better solutions than other heuristics. It is important to note
that capacity constraints are present in many of these applications, just
as they are in the CMST. These two observations were the main
motivations for exploring the suitability of the BRKGA for the CMST.

The main contributions of this paper are:

� We propose a new BRKGA for the CMST. We test our heuristic on
126 well-known benchmark instances. We are not aware of any
other exact or heuristic algorithm for the CMST, tested on such an
extensive set of instances. Using a fixed set of parameters values,
our BRKGA consistently produces good results with quite modest
computing requirements, independently of the type of test
instance. The numerical results of our extensive computational
experiments indicate that our BRKGA outperforms other heuris-
tics for the CMST both in terms of average deviations from best-
known solutions and number of best-known solutions found.

� We study various potential ingredients for the BRKGA and analyze
their individual contribution to the overall algorithm. Two alter-
native decoders are proposed to identify the most effective way of
transmitting genetic information from parents to offsprings for
the CMST. We are not aware of any code in the literature that
represents spanning trees and takes into account capacity con-
straints. Both decoders are enhanced with an improvement phase
which incorporates a local search involving four different neigh-
borhoods. Strategic oscillation is applied as well. In all cases,
alternative strategies are considered and compared.

� Our BRKGA is able to improve the best-known solution for
seven out of the 25 instances in our benchmark set with
unknown optimal solution. This is remarkable taking into
account that these are very well-known benchmark instances,
which have been much-used by different authors.

The paper is organized as follows. In Section 2, we describe the
CMST. In Section 3, we briefly recall biased random-key genetic
algorithms. In Section 4, we describe the two decoders as well as the
improvement phase that we have incorporated into our BRKGA for
the CMST. Different implementation alternatives and reinforcements
for the decoders and search strategies are successively presented. The
individual impact of each of the proposed ingredients is analyzed in
the first part of Section 5. The section concludes with the computa-
tional results of the overall proposed BRKGA. The paper ends in
Section 6 with some concluding remarks.

2. Notation and problem description

Let G¼ ðV ; EÞ be a given simple graph, with V ¼ f0;1;…;ng,
where 0 is a central processor and V þ ¼ f1;…;ng � V is a set of n

terminals. Associated with each edge e¼ ði; jÞAE there is a cost
cij40. Each terminal i, i¼1,…,n, has an associated demand wiZ0.

Given a spanning tree T � E of G, rooted at 0, the cost of T is
naturally defined as cðTÞ ¼∑eATce. We denote by subroot of T any
vertex directly connected to the root vertex 0. A subtree of T rooted
at vertex iAV is denoted by Ti. A subtree TiDT where i is a subroot
of T is called s-tree. We use the notation VðTiÞ � V to denote the set
of terminals that are part of subtree Ti and wðTiÞ ¼∑jAVðTiÞwj to
denote the demand of subtree Ti.

Definition 1. Given a graph G¼ ðV ; EÞ with a distinguished vertex
0AV , a demand wi associated with each terminal vertex iAV þ , a
nonnegative cost cij associated with each edge ði; jÞAE, and a
capacity Q40, the CMST is to find a minimum-cost spanning tree
of G, rooted at 0, such that the demand of no s-tree exceeds Q.

3. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic
algorithms (RKGA), were introduced by Bean [6] for solving
combinatorial optimization problems involving sequencing and
other optimization problems where the solution can be repre-
sented as a permutation vector. In a genetic algorithm, solutions
are often referred to as individuals or chromosomes. In a RKGA
individuals are represented as vectors of n random keys, i.e. n real
numbers independently generated at random in the uniform
interval ½0;1Þ. Parameter n is problem dependent. A decoder is a
deterministic algorithm that takes as input a vector of random
keys and produces from it a feasible solution for which an
objective value or fitness can be computed.

A RKGA evolves a population of random-key vectors over a
number of iterations, called generations. The initial population is
made up of p vectors of n random keys. In generation k the fitness
of each individual is computed by the decoder. The population is
then partitioned into two groups of individuals: a small group of
peop=2 elite individuals, i.e. those with the best fitness values,
and the remaining set of p�pe non-elite individuals. To evolve the
population, a new generation of individuals must be produced.
This is done in three steps.

In step 1, all elite individuals of the population of generation k are
copied without modification to the population of generation kþ1.
RKGAs implement mutation by introducing mutants into the popula-
tion. A mutant is simply a vector of n random keys generated as the
individuals of the initial population. The role of mutants is to inject
noise into the population with the goal of avoiding getting stuck at a
locally optimal solution. In step 2, pm mutants are introduced into the
population of generation kþ1. With the pe elite individuals and the
pm mutants accounted for in population kþ1, p�pe�pm additional
individuals need to be produced to complete the p individuals that
make up the new population. This is done in step 3 by producing
p�pe�pm offspring through the process of mating or crossover.
Bean [6] selects two parents at random from the entire population
and combines them using parameterized uniform crossover [52].

A biased random-key genetic algorithm, or BRKGA [19,22], differs
from a RKGA in the way parents are selected for mating and what
role each parent plays in crossover. Unlike in a RKGA, where parents
are selected at random from the entire population, in a BRKGA each
offspring is generated combining one individual selected at random
from the elite partition of the population and another from the non-
elite partition. As in a RKGA, repetition in the selection of mates is
allowed and therefore an individual can produce more than one
offspring in the same generation. Let ρe be the probability that an
offspring inherits the random key of its elite parent. In order to try
to keep its good quality, this probability is typically taken as
ρe40:5. If n is the number of random keys in an individual, then
for i¼ 1;…;n; the i-th component o½i� of the offspring vector o takes

E. Ruiz et al. / Computers & Operations Research 57 (2015) 95–10896



Download English Version:

https://daneshyari.com/en/article/475446

Download Persian Version:

https://daneshyari.com/article/475446

Daneshyari.com

https://daneshyari.com/en/article/475446
https://daneshyari.com/article/475446
https://daneshyari.com

