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a b s t r a c t

The double Pareto Lognormal (dPlN) statistical distribution, defined in terms of both an exponentiated
skewed Laplace distribution and a lognormal distribution, has proven suitable for fitting heavy tailed
data. In this work we investigate inference for the mixture of a dPlN component and ðk�1Þ lognormal
components for k fixed, a model for extreme and skewed data which additionally captures multi-
modality.

The optimisation criterion based on the likelihood maximisation is considered, which yields a global
optimisation problem with an objective function difficult to evaluate and optimise. Variable Neighbour-
hood Search (VNS) is proven to be a powerful tool to overcome such difficulties. Our approach is
illustrated with both simulated and real data, in which our VNS and a standard multistart are compared.
The computational experience shows that the VNS is more stable numerically and provides slightly
better objective values.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we address a statistical parametric inference
problem, in which one is given a random sample y¼ ðy1;…; ynÞ,
a class of probability density functions (pdf) fgð�jϑÞ : ϑAΘg
indexed by a multidimensional parameter ϑAΘ, and the purpose
is to find the parameter ϑn for which the corresponding pdf gð�jϑnÞ
matches best to the data set.

There is no canonical performance measure for such match,
and in this paper the classical Maximum Likelihood Estimation (ML),
which is easily shown to be equivalent to the following optimisa-
tion problem:

max
ϑAΘ

LMLðyjϑÞ≔
1
n

∑
1r irn

log gðyijϑÞ; ð1Þ

is considered.
The double Pareto Lognormal (dPlN) distribution, originally

defined in Reed and Jorgensen [27], generalises the well known
lognormal distribution and has been applied in different heavy-
tailed settings such as teletraffic and risk theory [26], physics [29],
bioinformatics [19] or complex networks [11]. Unlike the classic
Pareto model, whose density function is decreasing and unimodal
at zero, the dPlN density admits more versatility and in particular,

the previous works show that the dPlN correctly models both
the tail and body of the distribution and is able to capture
different forms of asymmetry. The class of probability density
functions considered in this work is the mixture of dPlN
densities; specifically, for the sake of parsimony we consider a
mixture of a dPlN component and ðk�1Þ lognormal distributions
(LN) for k fixed, which as will be seen defines a realistic and
suitable model for capturing multimodality, skewness and heavy
tailed patterns.

Optimisation problems such as (1) are frequently multimodal,
and call for the use of Global Optimisation tools, as advocated e.g.
in Abbasi et al. [1], Gourdin et al. [13], Liu [18], Pang et al. [24],
Román-Román et al. [28], Vera and Díaz-García [30]. The ML
problem addressed here is not an exception: as shown in this
paper this estimation problem is highly multimodal and thus,
global optimisation procedures must be used to avoid the risk of
getting stuck at a (bad) local optimum. Different strategies such as
those proposed in the above mentioned papers could be used to
obtain a global optimum. In this paper we propose the popular
Variable Neighbourhood Search algorithm [5,14,15,23,22] to
address the considered ML problem. Our choice of VNS is moti-
vated by the fact that it is well documented in the literature,
extremely easy to implement, it allows one to perform local
searches, to cope with optimisation problems with unbounded
feasible regions, and, as shown in our numerical experience, it
allows us to successfully exploit the structure of the optimisation
problem.
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The remainder of the paper is structured as follows. In Section 2,
the main properties of the considered dPlN-lN mixture model are
introduced, and the problem of parameter estimating is stated.
Some important difficulties found when evaluating the objective
function, which make the optimisation process harder, are detailed
in Section 3. Section 4 describes how the optimisation problem is
successfully addressed with VNS. Numerical tests are performed on
both artificial and realworld data sets, in which our VNS is
compared against a basic global optimisation approach, namely,
multistart. Some final remarks and future lines of research are
presented in the concluding section, Section 5.

2. Estimation of dPlN-lN mixtures

2.1. The mixture model

In this section we review the basic concepts and properties of
the statistical model addressed in this paper. The reader is referred
to Reed and Jorgensen [27] and Ramírez et al. [26] for further
details.

A random variable Y is said to have a Normal Laplace distribution
(NL), denoted Y �NLðα;β;ν; τ2Þ if Y can be expressed as the sum of
two independent random variables, Y ¼ ZþW , where Z follows a
normal distribution, Z �Nðν; τ2Þ, and W is a skewed Laplace
distributed variable, with pdf of the form

f W ðwjα;βÞ ¼

αβ
αþβ

eβw if wr0;

αβ
αþβ

e�αw if w40;

8>>><
>>>:

for α, β40.
The pdf of Y is

gY ðyjα;β;ν; τ2Þ ¼
αβ
αþβ

ϕ
y�ν
τ

� �
½Rðατ�ðy�νÞ=τÞþRðβτþðy�νÞ=τÞ�;

ð2Þ
where R(z) is the Mills’ ratio defined by

RðzÞ ¼ΦcðzÞ=ϕðzÞ; ð3Þ
where ΦcðzÞ ¼ 1�ΦðzÞ, and ϕðzÞ and ΦðzÞ are the standard normal
density and cumulative distributions respectively. Because of the
skewed Laplace component in the definition of Y, the pdf of the NL
is asymmetric. Reed and Jorgensen [27] derive the limiting forms
of the NLðα;β;ν; τ2Þ distribution:
gY ðyjα;1;ν; τ2Þ � lim

β-1
gY ðyjα;β;ν; τ2Þ

¼ αϕ
y�ν
τ

� �
Rðατ�ðy�νÞ=τÞ; ð4Þ

gY ðyj1;β;ν; τ2Þ � lim
α-1

gY ðyjα;β;ν; τ2Þ

¼ βϕ
y�ν
τ

� �
Rðβτþðy�νÞ=τÞ; ð5Þ

called left-/right-handed Normal Exponential distributions, respec-
tively. It can be proven that when both α and β increase, the limiting
case is the Normal distribution Nðν; τ2Þ.

A random variable X is said to have a double Pareto Lognormal
(dPlN) distribution with parameters ðα; β; ν; τ2Þ if X can be
written as X ¼ expðYÞ, where Y is Normal Laplace distributed.
The pdf of a dPlN is therefore given by

f X ðxjα;β;ν; τ2Þ ¼
αβ
αþβ

1
x

� �
ϕ

log x�ν
τ

� �

� ½Rðατ�ðlog x�νÞ=τÞþRðβτþðlog x�νÞ=τÞ�:
Parameter estimation of the dPlN model is addressed in Reed

and Jorgensen [27] and Ramírez et al. [26]. Although the

optimisation problem obtained is multimodal, and even the
evaluation of the objective function may be problematic, these
critical issues have not been discussed in the literature. In this
paper we consider a more general model, namely, a mixture of k
dPlN distributions,

f Xmix
ðxjω;α;β;ν; τ2Þ ¼ ∑

k

i ¼ 1
wif Xðxjαi;βi;νi; τ

2
i Þ; ð6Þ

whereωi40 for i¼ 1;…; k, and ∑k
i ¼ 1ωi ¼ 1. The mixture model in

(6) inherits most of the properties of the dPlN distribution.
In particular, the moment of order n exists if minfα1;…;αkg4n
and (6) is monotonically decreasing if maxfβ1;…;βkgA ð0;1Þ.

The number of parameters to be estimated in (6) is 5k�1.
In order to reduce the possible overparametrisation of the model,
we consider a particular case of (6), in which αi ¼ βi ¼ þ1, for
i¼ 2;…; k. In other words, we fit a mixture of one dPlN component
defined by ðα1; β1; ν1; τ21Þ where 0oα1oþ1 or 0oβ1oþ1,
and ðk�1Þ lognormals LN ðνi; τ2i Þ, for i¼ 2;…; k. In this way, the
model, which will be denoted from now dPlN-lN mixture model,
may be seen as rather parsimonious but at the same time it is able
to detect multimodality and skewness in the data set.

Fig. 1 depicts different forms of the considered dPlN-lN mixture
model in logarithmic scales for the case k¼2. In all panels the
weights are ω¼ ð0:5; 0:5Þ and the second component is lognor-
mally distributed with parameters ðν2; τ22Þ ¼ ð5;4Þ. Each parameter
α1, β1, ν1 and τ1 of the first component varies within each panel,
keeping the other parameters fixed.

2.2. Problem statement

Given a random sample x¼ ðx1;…; xnÞ from a dPlN mixture
model (6), the goal is to estimate the model parameters
fω; α; β; ν; τg. The number of components k will be assumed
to be known throughout this paper. Note that if Ymix follows the
mixture:

gYmix
ðyjω;α;β;ν; τ2Þ ¼ ∑

k

i ¼ 1
wigY ðyjαi;βi;νi; τ

2
i Þ; ð7Þ

then Xmix ¼ expðYmixÞ has the pdf (6), and thus it is equivalent to
estimate either (6) or (7). Since it is easier computationally to work
with the NL pdf (2), we define y¼ ðy1;…; ynÞ, where yr ¼ log ðxrÞ,
r ¼ 1, …, n, and estimate the model (7).

As mentioned in the previous section, for the sake of parsimony
we will estimate the dPlN-lN mixture model, a particular case of
(7) where the first component is assumed to follow a NL with
parameters ðα1;β1;ν1; τ21Þ for α1;β140 and ðα1;β1Þa ðþ1; þ1Þ,
and the other ðk�1Þ components are normals defined by Nðνi; τ2i Þ,
that is αi ¼ βi ¼1, for i¼2,…,k. The estimation criterion men-
tioned in Section 1, namely, Maximum Likelihood (ML) estimation,
is considered. It leads to the optimisation problem

max
ðω;α;β;ν;τÞAΘ

LMLðyjω;α;β;ν; τ2Þ;

where the objective function as in (1) is

LMLðyjω;α;β;ν; τÞ ¼ 1
n

∑
1r irn

log gYmix
ðyijω;α;β;ν; τ2Þ; ð8Þ

the function gYmix
ðyj�Þ is given by (7), and the parameter space Θ

is defined by the following constraints:

α1;β140; ðα1;β1Þaðþ1; þ1Þ;
αi ¼ βi ¼1; i¼ 2;…; k
νiAR; i¼ 1;…; k

τ2i 40; i¼ 1;…; k

ωi40; i¼ 1;…; k; ∑
k

i ¼ 1
ωi ¼ 1: ð9Þ

E. Carrizosa et al. / Computers & Operations Research 52 (2014) 231–240232



Download English Version:

https://daneshyari.com/en/article/475499

Download Persian Version:

https://daneshyari.com/article/475499

Daneshyari.com

https://daneshyari.com/en/article/475499
https://daneshyari.com/article/475499
https://daneshyari.com

