
A hybrid variable neighborhood search algorithm for solving
the limited-buffer permutation flow shop scheduling problem
with the makespan criterion

Ghasem Moslehi n, Danial Khorasanian
Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

a r t i c l e i n f o

Available online 5 October 2013

Keywords:
Scheduling
Limited-buffer permutation flow shop
Makespan
Variable neighborhood search
Simulated annealing algorithm
Blocking flow shop

a b s t r a c t

This paper investigates the limited-buffer permutation flow shop scheduling problem (LBPFSP) with the
makespan criterion. A hybrid variable neighborhood search (HVNS) algorithm hybridized with the
simulated annealing algorithm is used to solve the problem. A method is also developed to decrease
the computational effort needed to implement different types of local search approaches used in the
HVNS algorithm. Computational results show the higher efficiency of the HVNS algorithm as compared
with the state-of-the-art algorithms. In addition, the HVNS algorithm is competitive with the algorithms
proposed in the literature for solving the blocking flow shop scheduling problem (i.e., LBPFSP with zero-
capacity buffers), and finds 54 new upper bounds for the Taillard's benchmark instances.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The flow shop scheduling problem is one of the most popular cases
of machine scheduling problems. Unlike the general assumptions of
the problem, its intermediate buffers may have limited capacity due
to either technological considerations or process characteristics [1].
The advents of just-in-time manufacturing and Kanban systems which
maintain a limited in-process inventory have attracted the attention of
most researchers to the limited-buffer permutation flow shop sche-
duling problem (LBPFSP) [2]. In the case of LBPFSP with non-zero
capacity buffers, a completed job on a machine may block it until the
next intermediate buffer has a free space. Also, in the case with zero
capacity buffers, called the ‘blocking flow shop scheduling problem’

(BFSP), a completed job may block the machine until the next
downstream machine is free. The process of no jobs can be started
on a machine, until a job blocks it. Hall and Sriskandarajah [1]
presented a good review of the studies and applications of LBPFSPs.

In this paper, the LBPFSP with the makespan criterion is
investigated. Papadimitriou and Kanellakis [3] proved the strong
NP-hardness of the two-machine LBPFSP with a one-capacity buffer
and the makespan criterion. Also, Hall and Sriskandarajah [1]
showed that the three-machine BFSP with the makespan criterion
is strongly NP-hard.

Due to the high complexity of the LBPFSP with the makespan
criterion, attempts at its solution have invested more on the use of
heuristics than other methods. Leisten [4] compared some con-
structive heuristics to arrive at the conclusion that the well-known
Nawaz–Enscore–Ham (NEH) heuristic outperforms all others.
Smutnicki [5] developed a tabu search (TS) algorithm for the
two-machine case using H_block and S_block properties. The use
of H_block and S_block properties may accelerate the local search
by initially eliminating the neighbors that do not improve the
current solution. Later, Nowicki [6] generalized Smutnicki's algo-
rithm [5] to the m-machine case. Wang et al. [7] presented a
hybrid genetic algorithm (HGA) and showed its superiority over
the TS algorithm. Further, Liu et al. [2] developed a hybrid particle
swarm optimization (HPSO) algorithm which obtained better
solutions for most benchmark instances than HGA did. Recently,
Pan et al. [8] proposed a chaotic harmony search (CHS) algorithm
and obtained better results compared to HGA or HPSO algorithms.
Also, Qian [9] presented a hybrid differential evolution (HDE)
algorithm for the multi-objective LBPFSP.

A greater number of approaches have been proposed for solving
the BFSP with the makespan criterion than those developed for
solving the general case of the problem, i.e. the LBPFSP with the
makespan criterion. Except for the branch and bound algorithm
proposed by Ronconi [10] and that by Companys and Mateo [11],
almost all other approaches are inexact. McCormick et al. [12]
proposed a profile fitting (PF) heuristic. Later, Ronconi [13] presented
a minmax (MM) heuristic, a combination of NEH and MM (MME),
and a combination of NEH and PF (PFE). Computational results
showed the superiority of MME and PFE over NEH. Caraffa et al. [14]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.09.014

n Corresponding author. Tel.: þ98 311 391 5522; fax: þ98 31 139 15 526.
E-mail addresses: moslehi@cc.iut.ac.ir, moslehi@istt.ir (G. Moslehi),

d.khorasanian@in.iut.ac.ir (D. Khorasanian).

Computers & Operations Research 52 (2014) 260–268

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.09.014
http://dx.doi.org/10.1016/j.cor.2013.09.014
http://dx.doi.org/10.1016/j.cor.2013.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.014&domain=pdf
mailto:moslehi@cc.iut.ac.ir
mailto:moslehi@istt.ir
mailto:d.khorasanian@in.iut.ac.ir
http://dx.doi.org/10.1016/j.cor.2013.09.014
http://dx.doi.org/10.1016/j.cor.2013.09.014


presented a genetic algorithm (GA) for this problem while Grabow-
ski and Pempera [15] developed a TS algorithm and one with multi-
moves (TSþM), both of which outperformed the GA. Wang et al.
[16] developed a hybrid discrete differential evolution (HDDE)
algorithm that outperformed the TS and TSþM proposed by
Grabowski and Pempera [15]. Ribas et al. [17] presented an iterated
greedy (IG) algorithm that outperformed the HDDE algorithm.
Recently, Wang et al. [18] have proposed a hybrid modified global-
best harmony search (hmgHS) algorithm which outperforms the IG
algorithm. For an initial solution generation, they used the NEH–
Wang–Pan–Tasgetiren (NEH–WPT) heuristic which is a modified
version of the NEH and showed its superior performance over NEH.
In another study, Wang et al. [19] developed a three-phase algorithm
(TPA) which outperformed the IG algorithm with lower CPU-times.
Finally, Lin and Ying [20] proposed a revised artificial immune
system (RAIS) algorithm that outperformed the IG algorithm.
No comparison has been made among the hmgHS, TPA, and RAIS
algorithms in the past studies.

This paper aims to solve the LBPFSP with the makespan
criterion using a variable neighborhood search (VNS) algorithm
hybridized with the simulated annealing (SA) algorithm. The VNS
algorithm, a metaheuristic initially proposed by Mladenović and
Hansen [21], draws upon the idea of systematically changing the
neighborhood structure. The algorithm and its variants have been
successfully used to solve some combinatorial optimization pro-
blems [22–24], among others. According to this algorithm, first an
initial solution is generated. In a second stage, the three steps of
‘shaking’, ‘local search’, and ‘neighborhood change’ are repeated in
this order until a stopping criterion is met. Algorithm 1 illustrates
these steps. In the shaking step, a neighbor x′ is generated for the
current solution (x) using the k-th pre-defined neighborhood
structure (Nk) where kA{1, …, kmax}. In Line 6, Nk (x) represents
a set including all neighbors of x generated by Nk. After the shaking
step, a local search is performed on x′. Finally, in the neighborhood
change step, if the solution obtained from the local search step (x″)
is better than x, it will be considered as the new current solution,
and k will be equal to 1; otherwise, k¼kþ1. The hybrid VNS
algorithm (HVNS), presented in Section 4, uses the idea of the SA
algorithm in the local search step.

Algorithm 1. VNS algorithm

1 Generate an initial solution x;
2 Repeat
3 k¼1;
4 Repeat
5 %Shaking
6 Generate a neighbor x′ANk (x);
7 %Local search
8 Obtain x″ by a local search for x′;
9 %Neighborhood change
10 If x″ is better than x
11 x¼x″; k¼1;
12 Else k¼kþ1;
13 Endif
14 Until k¼kmax

15 Until stopping criterion is met

The rest of the paper is organized as follows. Following this
Introduction, the LBPFSP with the makespan criterion is formu-
lated in Section 2. Section 3 provides the provisions needed for
speeding up the local search approaches. Section 4 develops
the HVNS algorithm for the problem. Algorithm settings and

computational results are presented in Section 5. Finally, conclu-
sions and suggestions for future studies are presented in Section 6.

2. Problem formulation

In LBPFSP with the makespan criterion, there are n jobs that
should be sequentially processed on a series of machines m1, m2,…,
and mm. The operation Oi,r corresponds to the processing of job r,
rA{1,…, n}, on machine i, {i¼1,…,m}, the processing time of which
is equal to pi,r. Between each two consecutive machines i and iþ1,
i¼1, …, m�1, there exists a buffer with the size equal to BiZ0. The
jobs obey the first-in-first-out (FIFO) rule in the buffers, and the
sequence in which the jobs are processed on each machine is
consequently identical. In the case with non-zero size buffers, a
completed job on a machine may block it until a free space is
available in the intermediate buffer. Also, in BFSP, the completed job
on the machine may block it until the next downstream machine is
free. At any time, each machine can process at most one job, and
each job can be processed on at most one machine. The release time
of each job is equal to zero, and the set-up times are included in the
processing times. Also, each job is processed without preemption
on each machine. The objective of the problem is to find a sequence
that minimizes the makespan.

Let us consider the sequence π¼(π (1), π (2), …, π (n)) where
π (j) represents the j-th job in the sequence, further, define Si,j (π),
i¼1, …, m, j¼1, …, n, as the earliest starting time of job π (j) on
machine i calculated from the following recursive formula [2]:

Si;jðπÞ ¼ maxðSi;j�1ðπÞþpi;πðj�1Þ; Si�1;jðπÞþpi�1;πðjÞ;

Siþ1;j�Bi �1ðπÞÞ; i¼ 1; :::;m; j¼ 1; :::;n ð1Þ
where, pi,π (j�1)¼0 and Si, j�1 (π)¼0 for j¼1, pi�1,π (j )¼0 and Si�1, j

(π)¼0 for i¼1, and Siþ1;j�Bi �1ðπÞ ¼ 0 for i¼m or jrBiþ1. The
makespan of the sequence π designated by Cmax (π) is equal to Sm,n

(π)þpm,π (n).

3. Preparations to speed up local search approaches

In LBPFSP, the precedence relationships existing between the
operations of jobs in a given sequence can be depicted in a directed
graph. In the graph for the sequence π¼(π (1), π (2), …, π(n)), there
are m�n nodes, where the node (i, j), iA{1, …, m}, jA{1, …, n}
represents the operation Oi,π (j) and has a weight equal to pi, π (j).
The graph has a horizontal arc between the nodes (i, j) and (i,jþ1),
iA{1, …, m}, jA{1, …, n�1}, a vertical arc between the nodes (i, j)
and (iþ1, j), iA{1, …, m�1}, jA{1, …, n}, and a skew arc between
the nodes (i, j) and (i�1, jþBi�1þ1), iA{2, …, m}, jA{1, …, n�Bi�1

–1}. The skew arc between the nodes (i, j) and (i�1, jþBi�1þ1), iA
{2, …, m}, jA{1, …, n�Bi�1–1} has a weight equal to (–pi, π(j)) while
those of the other arcs are equal to zero. The length of the longest
path in the graph is equal to Cmax (π). The longest path, called the
‘critical path’, contains some nodes with zero floating times, called
‘critical nodes’. The values for the earliest and latest starting times
are the same for each critical node [25]. Fig. 1 shows the graph of a
sequence for a problem with n¼7, m¼4, B1¼B3¼1, and B2¼0. The
weight of each node is placed on it. Also, the critical nodes are
shown in dark and bold typeface.

Define Ti,j (π), i A{1, …, m}, jA{1, …, n} as the duration between
the latest loading time of π (j) on machine i and Cmax (π), calculated
as follows based on the graph:

Ti;jðπÞ ¼ maxðTiþ1;jðπÞþpi;πðjÞ; Ti;jþ1ðπÞþpi;πðjÞ; Ti�1;jþBi� 1 þ1ðπÞÞ;
i¼ 1; :::;m; j¼ 1; :::;n ð2Þ

where, Tiþ1;jðπÞ ¼ 0 for i¼m, Ti;jþ1ðπÞ ¼ 0 for j¼n, and
Ti�1;jþBi� 1 þ1ðπÞ ¼ 0 for i¼1 or j4n � Bi�1 1. It is straightforward

G. Moslehi, D. Khorasanian / Computers & Operations Research 52 (2014) 260–268 261



Download English Version:

https://daneshyari.com/en/article/475502

Download Persian Version:

https://daneshyari.com/article/475502

Daneshyari.com

https://daneshyari.com/en/article/475502
https://daneshyari.com/article/475502
https://daneshyari.com

