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In this paper, we consider a telecommunication service company facing seasonal demand and time-
varying capacity. A uniform lead-time, which is the maximum time span a customer has to wait before
receiving the required service, is quoted to all customers. We present a quadratic integer programming
model for the problem of scheduling jobs to meet the promised lead-time with the objective of balancing
the workload across time. Since in practice solving such a problem to optimality can be very difficult, two
variants of a variable neighborhood search approach are proposed. Extensive computational tests show
that our heuristics are able to provide high quality solutions efficiently.
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1. Introduction

In the telecommunications industry, a common practice is to
use uniform lead time, which is the maximum time span a
customer has to wait before receiving the required service. For
services (e.g. installation of broadband at telecom exchanges)
where customers do not have to participate in the service delivery
process, the advantages of quoting a uniform lead time are
twofold. On the one hand, all customers are guaranteed a uniform
delivery lead time. On the other hand, the firm can flexibly choose
the best time within the promised lead-time to carry out the work.
We consider a telecommunication operator with seasonal demand
for such a service. The available capacity per period also follows a
cyclic pattern. In order to improve service efficiency, i.e. to avoid
unnecessary capacity over-utilization in certain periods and
under-utilization in other periods, the workload must be balanced
across time. Thus, we are interested in how to match the firm's
capacity to customer demand in such a way that: (a) the quoted
lead-time is satisfied and (b) the capacity utilization rate per
period is distributed as equally as possible along the time line. This
problem will be referred to as the Workload Balancing Problem
(WBP) in the rest of the paper.

A clear definition for the measure of balance is necessary for
the study of workload balancing. Naturally, variance, standard
deviation or sum of squared deviations (SSD) are good measures, as
they tend to penalize larger deviations at a higher rate. We model
the WBP in terms of minimizing the SSD of capacity utilization
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rates across time periods from their mean. The WBP can be seen as
a Quadratic Integer Programming Problem (QIP or QIPP) due to the
formulation of the problem as an integer problem with a quadratic
objective function. The QIP is, in general, difficult to solve. Hence
mathematical programming techniques may fail to deliver an
exact solution in reasonable time. To practically solve the QIP,
heuristic algorithms which find high quality solutions in short
computation time have been proposed. Such heuristic algorithms
are variable neighborhood search [1-3], simulated annealing
[4-6], tabu search [7-9], genetic algorithms [10-14], evolution
strategies [15,16], ant algorithms [17-20], and scatter search
[21,12]. Among them, variable neighborhood search (VNS) is a
simple and powerful search method for solving combinatorial
problems. VNS-based heuristics are reported to be among the best
performing algorithms for a number of problems such as the
Traveling Salesman Problem (TSP) [3] and the Quadratic Assign-
ment Problem (QAP) [22]. The latter is NP-hard and is regarded as
one of the hardest QIP [23]. The QAP can be described as the
optimization problem of assigning a set of facilities to a set of
locations with given distances between the locations and given
flows between the facilities in order to minimize the sum of the
product between flows and distances. For solving the QAP, Stiitzle
presented in [22] heuristic algorithms with perturbation operator
considering change of the neighborhood in the search, which can
be seen as variants of VNS. His test results show that those VNS-
based heuristics have excellent performance when compared to
robust tabu search and MAX-MIN ant system, which are known to
perform well for the QAP [18,24]. For this reason, we propose two
variants of a VNS method to tackle the WBP.

The WBP was only once investigated by Li and He [25]. They
proposed two greedy local search algorithms to tackle the pro-
blem. However, these algorithms are time consuming and because
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of the greedy strategy, they can often get stuck in the local optima.
Another problem is that without providing a mathematical model and
thus an exact method, in their experiments, the previous authors were
only able to compare CPU times, but do not obtain any information
about solution quality in terms of loss of optimality.

This paper proposes several improvements to the previously
published work by Li and He [25] as follows: Section 2 presents a
mathematical model for the WBP, based on which an exact
solution can be derived. In Section 3, besides an exact method,
two new heuristics based on VNS are proposed to improve search
speed and solution quality. In Section 4, to illustrate the proposed
heuristic algorithms, a concrete numerical example is provided.
Section 5 shows computation results for 140 test problem
instances. Section 6 concludes and discusses potential extensions
and directions for further research.

2. Problem formulation
2.1. Assumptions

We consider a major telecommunication service company. The
company is using an integrated planning system, based on hierarchical
planning concepts that allow one to decompose the entire planning
problem into partial planning tasks but to still consider their inter-
dependencies and to coordinate their solutions. This planning system
consists of different modules, such as demand forecasting, resources
planning, work scheduling, which are interlinked with each other. It
makes use of solution approaches known as mathematical program-
ming and meta-heuristics and provides supports at different levels for
planning tasks along the company's service chain, from long-term
strategic decision making to short-term operational decisions. The
levels for planning may overlap or may be distinct. Either way there is
a flow of information from strategic to operational planning and then
to operational planning and vice versa.

Demand: The firm faces seasonal demand for a particular
service, e.g. broadband installation. The estimated demand data
are provided by the responsible module for forecasting demand.
Thus, the start and the end point of the seasonal cycle are known.
Further, the seasonal demand pattern, which repeats itself for
every cycle, is also given. By dividing the seasonal cycle into time
periods 1,...,M, the demand pattern can be expressed by a vector
[A1,....,Au]" (See Table 1 for the notations used). Each element of
this vector represents the demand (measured by the number of
jobs) that occurs through a particular time period.

Table 1
Notation for problem formulation.

M Length of one demand-cycle

N Length of one capacity-cycle

T Finite planning horizon, = = Icm(M, N)

I Set of job arrival dates, I ={1,...,7},iel

J Set of job completion dates, J={1,...,7}, je]

Ji Set of feasible completion dates of jobs arriving in period i
A Demand in period i

G Available capacity in period j

Xij Number of jobs that arrive at period i and are assigned
to completion date j

X Assignment scheme X = [X;j]...

3 The minimum time span a job has to wait before
it can be processed

L Uniform lead-time, # <L <7+7¢

uj Used capacity in period j

Hi Capacity utilization rate in period j

i Mean of capacity utilization rates during
the planning horizon =

T Internal release date of jobs that arrive in period i

d; Due date of jobs that arrive in period i

Capacity: The firm has a fixed number of permanent employees
and a number of seasonal technicians with repeated fixed term
contracts. The latter are retained in order to meet peaks in demand
(e.g. surge of demand for broadband installations at the beginning of
school terms). The information concerning availability of the work-
force per time period is provided by means of the medium-term,
anticipatory deployment plan. As it is possible to estimate the average
time a technician needs to complete a job, we represent capacity
during a time period in terms of the number of jobs to better match it
with customer demand. Capacity levels are assumed to follow a cycle
of N time periods with the pattern [cy, ..., cn] .

Planning horizon: The planning horizon 7 is the minimum time
interval after each of which both demand and capacity pattern will
repeat themselves. Thus, 7 is determined as the least common
multiplier of M and N, 7 = lcm(M, N).

Lead time: Uniform lead-time L is quoted to all customers. We
assume that L is bounded by #+1 and 7+7 (¢ <L < t+¢), where 7
denotes the minimal time span a job has to wait before it can be
processed.

Job: All jobs are the same and can be completed within one
time period. Each job is characterized by its arrival i and the time
period j, when it is completed.

For the ease of notation, let I and J where I =] = {1, ..., 7} denote
the set of job arrival dates and job completion dates respectively.
The demand and the available capacity during the planning
horizon are represented by the vectors 4 =[4;] and ¢ =[c;j], where
ieland je]. The vector A is obtained by 7/M-times concatenation
of [A4,...,Ay]", and the vector ¢ by z/N-times concatenation of
[C1,...s CN]T.

We want to find a job assignment scheme X = [x;],,., that deter-
mines how many jobs of each demand 4; are to be completed in
time period j, so that all demands are met within L periods and the
workload is balanced over time. In an ideal case, the capacity
utilization rate in every time period would be the same.

In the following, the lead-time constraints and the objective
function of the WBP are specified. Note that, an explicit formula-
tion of capacity constraints is not needed. The reasons are as
follows: (a) If the total capacity is sufficient to accommodate the
total demand over 7 periods (that is, Y4 < Ycjc) and the
quoted lead-time L is long enough, the objective function will
ensure that workload is distributed across periods as equally as
possible and the capacity utilization rate in each period is less than
or equal to 100%. (b) Otherwise, the firm will not be able to
accommodate the total demand within the promised lead-time
without exceeding the total capacity. In this case, the firm is better
off increasing capacity by hiring more labor or outsourcing part of
its service activities, but modeling these aspects is out of the scope
of this paper.

2.2. Lead-time constraints

We use internal release and due dates to indicate the time
window in which a job must be completed. The internal release
date is the earliest possible time a job can start. The internal
release date r;e({l1,...,7} of jobs, that arrive in period i, is
computed as

ri=({+¢+1)mod 7 (1

The modulo operation (mod 7) is used here and in the rest of
the paper to model the cyclical behavior of demand and capacity
that recurs every 7 period. The due date d;e({1,...,7} of jobs
arriving in period i is the latest time these jobs must be completed,
and is calculated as arrival time plus quoted lead-time.

di=(i+L)ymod 7 2)
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