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a b s t r a c t

It is not sufficient for a manufacturer of products to merely optimize lot sizes and production schedules
to reduce company-wide costs. Optimal policies for raw materials purchasing, stock keeping of input
material, inventory management of end products and customer demand fulfillment also have to be
implemented in an integrated manner. The economic lot and supply scheduling problem (ELSSP) deals
with the problem of the simultaneous planning of raw materials purchasing, production planning and
storage of finished goods. The underlying assumptions of an ELSSP can be observed in several industrial
areas, e.g., the retailing and automotive industries. After a brief problem description and a literature
review, this paper presents a complete mathematical model and an exact procedure to solve the ELSSP
using a power-of-two policy. The solution procedure is based on the junction point method. Analytical
results for a broad range of test instances are calculated comparing the results of a power-of-two policy
to the results from applying a common cycle policy. The results emphasize the economic advantages of
the power-of-two policy especially for certain parameter values.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We investigate the economic lot and supply scheduling problem
(ELSSP) using a power-of-two policy. The ELSSP merges the assump-
tions of the economic lot-sizing and scheduling problem (ELSP)
as specified in Carstensen [9], and the capacitated vehicle routing
problem (CVRP) as defined for example in Toth and Vigo [44].
A detailed description of the ELSSP is given in Kuhn and Liske [28].

Fig. 1 shows the main physical structure of the system being
investigated. The supply and production system consists of a
transportation fleet, an input materials warehouse, a production
facility and an end items warehouse. The end items are stored in
the end items warehouse until the delivery to the customers. The
manufacturer receives the required input materials from an input
materials warehouse, storing the necessary input materials. The
stock of the input materials warehouse is replenished by having
input materials collected from geographically dispersed suppliers
by the transportation fleet operated by the manufacturer.

We assume an assembly production structure. The corresponding
bill of materials (BOM) is specified in Fig. 2, whereby aij denotes the
amount of input material i needed for the production of one unit of

end item j; jAP. Sj denotes the set of input materials needed to
produce end item j. However, we assume that each input material is
needed for exactly one end item only. The general aim is to determine
an optimal production sequence, production lot sizes, delivery quan-
tities and delivery dates for the input materials and routes for the
collection of the input materials from the suppliers. The target of
the planning problem is to minimize the overall costs, including the
inventory holding costs of the input materials and the end items,
the production costs as setup costs or related cost parameters, and the
costs for the collection of the input materials from the suppliers.
In addition, a stationary demand rate and an infinite planning horizon
are assumed. Kuhn and Liske [28] were the first to define the ELSSP.
However, they assume a common production cycle policy. Applying
this policy assumes that the production cycle times (Tj) of all end items
j; jAP are identical and equal to T, i.e., Tj ¼ T , 8 jAP.

This assumption is now relaxed and we assume that end items
may be produced by different production cycles, however, a common
basic period (B) still exists. The individual cycle time of end item j is
then given by an integer multiplier of this basic period, i.e., Tj ¼mjB,
8 jAP. The overall cycle time T is then the maximum multiplier
multiplied by the basic period, T ¼mmaxB. In addition, we assume that
the integer multipliers have to be a power-of-two number, which
restricts the solution space and provides latitude for more effective
solution methods to this restricted version of the problem. In the
literature this policy is commonly known as “power-of-two produc-
tion policy”.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.04.012
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ49 841 937 21820; fax: þ49 841 937 21955.
E-mail addresses: heinrich.kuhn@ku.de (H. Kuhn),

thomas.liske@ku.de (T. Liske).
1 Tel.: þ49 841 937 21823.

Computers & Operations Research 51 (2014) 30–40

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.04.012
http://dx.doi.org/10.1016/j.cor.2014.04.012
http://dx.doi.org/10.1016/j.cor.2014.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.04.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.04.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.04.012&domain=pdf
mailto:heinrich.kuhn@ku.de
mailto:thomas.liske@ku.de
http://dx.doi.org/10.1016/j.cor.2014.04.012
http://dx.doi.org/10.1016/j.cor.2014.04.012


In accordance with Kuhn and Liske [28], we assume that the
delivery dates of the input materials are equal to the production
start time of their associated end items. In addition, we assume
one pickup from each supplier to retrieve the required input
materials for each production run. Multiple pickups during one
production run are not considered. All types of input material and
their related suppliers (Sj) that correspond to the same end items
j; jAP can therefore be considered in one common capacitated
vehicle routing problem (CVRP). However, since a power-of-two
policy is assumed, the end items can be produced more than once
during the overall production cycle T. A common basic period
therefore has to be determined, and a multiplier has to be
established for each end item j; jAP that is of the form mj ¼ 2πj ,
in which πj; jAP is a positive integer.

2. Literature review

The integrated production and transportation problem may be
considered from different perspectives. On the one hand it may be
viewed as a production distribution problem (PDP), considering a
producer or a retailer who distributes products to one or several
customers (stores) (see Kuhn and Sternbeck [29] for example). On the
other hand it may be considered from the perspective of an inbound
logistics system where a producer or a buyer procures products from
one or several suppliers, i.e., a sourcing production problem (SPP).

In addition to that, these two fundamental problem situations
may be differentiated in terms of the supply chain structure, i.e.,
the number of producers (vendors) and the number of customers
(buyers) involved. Basically, published models in the literature
examine a scenario regarding either single or multiple vendors
(SV or MV) mixed with single or multiple buyers (SB or MB).

This results in four possible supply chain structures: SVSB, MVSB,
SVMB, MVMB (s. [11]).

These four supply chain structures could be combined with the
two distinctive market perspectives mentioned above, PDP or SPP,
resulting in eight distinguishable problem classes.

Models concerning PDP: Most available approaches in the litera-
ture consider production distribution problems (PDP). In these
cases the production part is completed first and the products are
distributed afterwards.

A general review of integrated production distribution systems
is given in Sarimento and Nagi [39]. The focus of this research is on
how the logistics aspects are represented in such models, and the
advantages of these planning approaches.

Chandra and Fisher [10] develop a combined vehicle routing
and production scheduling model assuming a finite planning
horizon with known dynamic demand. A solution for the model
is found by solving the multi-item lot-sizing problem first and
defining a distribution plan afterwards. Fumero and Vercellis [16]
present a similar model for a combined vehicle routing and
production scheduling problem in the context of production and
distribution planning. But in contrast to Chandra and Fisher [10],
a Lagrangian decomposition method is used to solve the model by
separating the model's production and distribution problem, but
still aiming at a global optimum. Kaminsky and Simchi-Levi [27]
study a two-stage production system where production takes
place at both stages and transport occurs from one stage to the
other. In most cases, the transportation costs result from the
solution of a vehicle routing problem.

However, all of these models assume a dynamic demand
structure and thus neglect the advantages in solving the consid-
ered production and transportation problem when stationary
demands and an infinite planning horizon can be assumed.

The link between the ELSP and the problem of delivering the
items produced to the customers is treated by the economic lot
and delivery scheduling problem (ELDSP) [14,22,24,25,23,26]. A
single production facility is assumed that can produce several
items, each with an individual but constant production rate; each
item is requested with a constant demand rate. The items are pooled
into subsets with a common production cycle and a common
delivery date.

However, the ELSDSP neglects the specific features of a CVRP:
the transportation costs considered do not result from the solution
of a specific vehicle routing problem. The transportation costs are
assumed to be independent of the customer's location, and so the
vehicle routing does not affect the pooling of the items. Another
type of ELSP extension is suggested by Banerjee [3]. He assumes
that finished goods inventories are shipped in full truckloads (TL)
to succeeding stages of the distribution channel.

The coordination of outgoing deliveries from a central ware-
house to geographically dispersed regional warehouses facing a
constant demand rate is the focus of the inventory routing
problem (IRP) [2,5,7,8,41,46]. This means that the overall costs,
consisting of transportation costs for the deliveries and inventory
costs arising from storing the items at the regional warehouses,
have to be minimized. One important fact is that the transporta-
tion costs are the result of a specific vehicle routing problem that
has to be solved. This implies that optimal routes along the
regional warehouses and optimal order quantities have to be
determined within the IRP. However, in contrast to the ELSSP,
the IRP only considers the vehicle routing and the storage of the
products, but not the limited capacity of the production facility
incorporated into these modeling approaches.

Nevertheless, all these ELSDSP and IRP models are concerned
with distribution inventory and outbound vehicle routing integra-
tion, and not with purchasing inventory and inbound vehicle
routing integration models.
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Fig. 1. Physical structure of the ELSSP.

Fig. 2. Bill of materials.
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