
Optimization procedures for the bipartite unconstrained 0-1 quadratic
programming problem

Abraham Duarte a, Manuel Laguna b, Rafael Martí c, Jesús Sánchez-Oro a

a Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Móstoles, Spain
b Leeds School of Business, University of Colorado at Boulder, Boulder, CO, USA
c Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Valencia, Spain

a r t i c l e i n f o

Available online 27 May 2014

Keywords:
Quadratic programming
Branch and bound
Heuristic search
Tabu search
Iterated local search

a b s t r a c t

The bipartite unconstrained 0-1 quadratic programming problem (BQP) is a difficult combinatorial
problem defined on a complete graph that consists of selecting a subgraph that maximizes the sum of
the weights associated with the chosen vertices and the edges that connect them. The problem has
appeared under several different names in the literature, including maximum weight induced subgraph,
maximum weight biclique, matrix factorization and maximum cut on bipartite graphs. There are
only two unpublished works (technical reports) where heuristic approaches are tested on BQP instances.
Our goal is to combine straightforward search elements to balance diversification and intensification in
both exact (branch and bound) and heuristic (iterated local search) frameworks. We perform a number
of experiments to test individual search components and also to create new benchmarks when
comparing against the state of the art, which the proposed procedure outperforms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The bipartite unconstrained 0-1 quadratic programming pro-
blem (BQP) consists of selecting a subgraph that maximizes the
sum of the weights associated with the chosen vertices and the
edges that connect them. The problem is defined on a complete
bipartite graph G¼ ðV ; EÞ, with I ¼ f1;2;…;mg representing the set
of vertices in the left-hand side of the graph, J ¼ f1;2;…;ng
representing the set of vertices in the right-hand side of the
graph, E representing the set of edges that connect the vertices in I
with the vertices in J, and V ¼ I [J. There is a weight cv associated
with each vertex vAV . There is also a weight qij that corresponds
to the edge connecting vertices iA I and jA J.1 The problem consists
of selecting SDV such that the following function is maximized

f ðSÞ ¼ ∑
vAS

cvþ ∑
i;jA S

qij

Fig. 1 shows an example with I¼ fa; b; cg, J ¼ fw; x; y; zg and the
table of edge weights. We assume that all vertex weights are zero

(i.e., cv ¼ 0 8 vAV). We point out that weights, either on the
vertices or the edges, can be positive, negative or zero.

Consider a solution S1 ¼ fa;w; x; zg. The objective function value
of this solution is

f ðS1Þ ¼ qða;wÞ þqða;xÞ þqða;zÞ ¼ 8�4þ13¼ 17

A better solution is obtained by making the following vertex
selections: S2 ¼ fb; c;w; y; zg. The objective function value of solu-
tion S2 is

f ðS2Þ ¼ qðb;wÞ þqðb;yÞ þqðb;zÞ þqðc;wÞ þqðc;yÞ þqðc;zÞ

¼ 1�7þ24�15þ8þ20¼ 31

In this case, an increase in the number of vertices from solution
S1 to solution S2 resulted in an increase in the objective function of
14 units (31–17¼14). However, this is not necessarily true in all
cases. For instance, selecting a and c on the left side and y and z on
the right side results in an objective function value of 38. This
solution has four vertices and is better than solution S2 that has
5 vertices.

The BQP has been studied in the literature under different
names: maximum weight induced subgraph [19], maximum
weight biclique [2], matrix factorization [7] or maximum cut
on bipartite graphs [1]. From the point of view of heuristic
optimization, however, the BQP has been somewhat neglected.
In particular, to the best of our knowledge, there exist two arti-
cles – currently available on line – that describe several heuristics

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.05.019
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

E-mail addresses: Abraham.Duarte@urjc.es (A. Duarte),
laguna@colorado.edu (M. Laguna), Rafael.Marti@uv.es (R. Martí),
jesus.sanchezoro@urjc.es (J. Sánchez-Oro).

1 Throughout our descriptions, we will use i to denote vertices in the left-hand-
side of the graph (i.e., vertices in I), j to denote vertices in the right-hand-side of the
graph (i.e., in J), and v to denote vertices in either side.

Computers & Operations Research 51 (2014) 123–129

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.05.019
http://dx.doi.org/10.1016/j.cor.2014.05.019
http://dx.doi.org/10.1016/j.cor.2014.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.019&domain=pdf
mailto:Abraham.Duarte@urjc.es
mailto:laguna@colorado.edu
mailto:Rafael.Marti@uv.es
mailto:jesus.sanchezoro@urjc.es
http://dx.doi.org/10.1016/j.cor.2014.05.019
http://dx.doi.org/10.1016/j.cor.2014.05.019

for this problem [11]. This work develops 24 heuristics that are
grouped into three families: fast-heuristics, slow-heuristics and
row-merge heuristics.

In the reminder of the paper, we first introduce an exact method
in the form of a branch-and-bound search. We describe this
optimization procedure, as well as a lower bound, in Section 2.
We then propose a heuristic procedure based on the iterated local
search (ILS) methodology (Section 3). ILS has strong connections
with the strategic oscillation originally proposed within tabu search
[8]. Specifically, we propose two solution construction procedures
(Section 3.1), two mechanisms to improve solutions via neighbor-
hood searches (Section 3.2), and one perturbation strategy. Section
4 describes the computational experiments performed, and finally
Section 5 presents the associated conclusions.

2. Branch-and-bound for the BQP

Branch and bound [13] is the process of systematically and
exhaustively exploring the solution space by means of a search
tree. See Wolsey [20] and Nemhauser and Wolsey [18] for classical
references of this search strategy. Recent successful applications
can be found in Martí et al. [17] and Martí et al. [16]. The search
operates with bounds (lower and upper) on the optimal value of
the objective function, a tree structure and exploration strategy.
We obtain an initial lower bound (LB) with the heuristic proce-
dures described in the following sections. This lower bound might
change in the course of the B&B search and is used alongside an
upper bound calculation in order to eliminate (i.e., prune)
branches from further consideration.

We utilize a binary tree, where each node is associated with a
vertex iA I in the graph. Each branch represents the decision of
whether or not the vertex is included in the solution. Therefore,
there are only two branches originating from each node in the
tree, including the root node. At each node of the tree (except the
root node), there is a set of vertices in I that have been selected,
denoted by I0. We point out that it is not necessary to branch on
vertices in J because given a selection of vertices in I the
corresponding optimal subset of vertices in J can be trivially
determined. This optimal selection of the vertices in J (denoted
by J0) generates a lower bound. In particular, a vertex jA J is
selected if and only if

gðjÞ ¼ cjþ ∑
iA I

0
qij40

The set S¼ I0 [J0 is a complete solution of the problem
and therefore f ðSÞ can be used to update LB when f ðSÞ4LB.

While a single (the best) lower bound is maintained throughout
the search, an upper bound (UB) is associated with each node.
The upper bound is used to determine whether additional
exploration rooted at the node is warranted. In particular, if
for a given node it is determined that UBrLB, then there is no
hope of finding a better solution by completing the sub-tree
that is rooted at that node. Corresponding to each node of the
tree, there is the set of selected vertices (i.e., I0) and also the set
IU of unexplored vertices. The vertices iA I that belong to
neither I0 nor IU are those that have been excluded from the
solution by previous branching decisions. An upper bound
associated with a node represented by (I0; IU) may be calculated
as follows:

UBðI0; IUÞ ¼ ∑
iA I0

ciþ ∑
iA IU

maxð0; ciÞ

þ∑
jA J

max 0; gðjÞþ ∑
iA IU

maxð0; qijÞþ ∑
iA I0

qij

 !

The upper bound calculation is based on adding all the known
weights (i.e., the weights associated with vertices that have been
selected) and the strictly positive weights of the vertices that have
not been explored. Then, we add the potential weight contribution
of each vertex jA J. Only strictly positive contributions are added to
the upper bound calculation.

There are two standard techniques to explore a B&B tree:
breadth-first and depth-first. Breadth-first generates wide trees
and has demanding memory requirements. In most cases, B&B
searches cannot be solely conducted on the basis of a breadth-
first strategy due to computer memory limits. A depth-first
approach attempts to find a leaf as fast as possible before
moving to a different node. The memory requirements for
depth-first are modest but the effectiveness of the approach is
somewhat limited. The best B&B implementations use a mixed
strategy that combines both approaches. In our mixed approach,
we start with a breadth-first search until memory is exhausted,
at which point, we switch to a depth-first exploration. Regard-
less of the exploring strategy, the direction i=2 I0 is always
explored first.

3. Iterated local search for the BPQ

Iterated local search [14], usually referred to as ILS, is a meta-
heuristic based on a modification of local search or hill climbing
methods for solving discrete optimization problems. Duarte
et al. [3] and Lozano et al. [15] describe successful applications
of this methodology. Algorithm 1 summarizes the ILS frame-
work. An initial solution S0 is generated that is immediately
subjected to an improvement procedure (LocalSearch). The
improved solution Sn becomes the starting point of the main
ILS loop. This iterative loop consists of three main functions:
Perturb, LocalSearch and Accept. Perturb typically employs ran-
dom elements to change the current solution Sn to produce the
perturbed solution S0. LocalSearch then attempts to find an
improved solution S0

n
and Accept implements the criteria by

which the next current solution Sn is chosen. Both Perturb and
Accept may use recorded history of the search to implement
their strategies. For instance, it is possible to use frequency
memory à la tabu search in order to bias perturbation mechan-
isms and acceptance criteria [4,5].

Although not explicit in Algorithm 1, the procedure keeps
track of the best solution and returns it upon termination. The
criteria within the Accept function create a balance between
diversification and intensification. The criterion that
encourages the most diversification is the one that always
accepts S0

n
and makes this solution the current solution (i.e.,

Edge Weight
+8
-4
-3

+13
+1
0
-7

+24
-15
-10
+8

+20

Fig. 1. BQP example.

A. Duarte et al. / Computers & Operations Research 51 (2014) 123–129124

Download English Version:

https://daneshyari.com/en/article/475537

Download Persian Version:

https://daneshyari.com/article/475537

Daneshyari.com

https://daneshyari.com/en/article/475537
https://daneshyari.com/article/475537
https://daneshyari.com

