Computers & Operations Research 51 (2014) 190-199

Contents lists available at ScienceDirect

COmMPULErS

& operations
research

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Grammar-based generation of stochastic local search heuristics
through automatic algorithm configuration tools ™

@ CrossMark

£

Franco Mascia*, Manuel Lopez-Ibaiiez, Jérémie Dubois-Lacoste, Thomas Stiitzle

IRIDIA CoDE, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium

ARTICLE INFO ABSTRACT

Available online 2 june 2014 Several grammar-based genetic programming algorithms have been proposed in the literature to
automatically generate heuristics for hard optimization problems. These approaches specify the
algorithmic building blocks and the way in which they can be combined in a grammar; the best
heuristic for the problem being tackled is found by an evolutionary algorithm that searches in the
algorithm design space defined by the grammar.

In this work, we propose a novel representation of the grammar by a sequence of categorical, integer,
and real-valued parameters. We then use a tool for automatic algorithm configuration to search for the
best algorithm for the problem at hand. Our experimental evaluation on the one-dimensional bin
packing problem and the permutation flowshop problem with weighted tardiness objective shows that
the proposed approach produces better algorithms than grammatical evolution, a well-established
variant of grammar-based genetic programming. The reasons behind such improvement lie both in the

Keywords:

Heuristics

Grammatical evolution

Automatic algorithm configuration
Bin packing

Flowshop scheduling

representation proposed and in the method used to search the algorithm design space.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in the development of methods for the auto-
matic configuration of optimization algorithms (also known as offline
configuration) have shown the benefits of configuring optimization
algorithms to specific problems [1-9], and several works in the
literature use such methods to generate new optimization algorithms
[10,11]. We call these latter approaches top-down approaches for
automatic algorithm design, since they use a parametrized algorith-
mic framework to produce specific algorithms. Such frameworks are
normally designed starting from a general (and usually complex)
procedure and integrating alternative high-level algorithm compo-
nents as fully-functioning blocks. In such a top-down approach, the
parameter space is easily defined according to these alternative
components. However, the flexibility of the framework is determined
by the complexity of the general procedure.

A different, bottom-up approach for automatic algorithm design
is used by grammar-based genetic programming [12-17]. In this

“This research has received funding from the COMEX project (Nr: P7156) within
the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office
and the Meta-X project, (Nr: AUWB-08/13-ULB2) funded by the Scientific Research
Directorate of the French Community of Belgium, and the MIBISOC network, an Initial
Training Network funded by the European Commission, grant PITN-GA-2009-238819.

* Corresponding author.

E-mail addresses: fmascia@ulb.ac.be (F. Mascia),
manuel.lopez-ibanez@ulb.ac.be (M. Lépez-Ibafiez),
jeremie.dubois-lacoste@ulb.ac.be (J. Dubois-Lacoste), stuetzle@ulb.ac.be (T. Stiitzle).

http://dx.doi.org/10.1016/j.cor.2014.05.020
0305-0548/© 2014 Elsevier Ltd. All rights reserved.

approach, the algorithm design space is described by a set of produc-
tion rules, and valid algorithms are instantiated by repeated applica-
tions of these rules. The benefit of a bottom-up approach is an
increased flexibility when defining valid combinations of algorithmic
components. Moreover, thanks to this flexibility, algorithmic compo-
nents in bottom-up approaches are often more fine-grained than in
top-down approaches. So far, the search for the best instantiation of
the grammar has been done by genetic programming and other
evolutionary methods.

In this paper, we investigate whether automatic algorithm config-
uration methods can be applied in a bottom-up approach. We answer
this question in two steps. First, we replace the evolutionary algorithm
in grammatical evolution (GE) [18], a type of grammar-based genetic
programming, by an automatic configuration method, irace [6], using
the same representation of the grammar as in the evolutionary
algorithm. Second, we propose a method to generate a parameter
space from a grammar, such that instantiations of the grammar can be
represented by parameter configurations, which are more natural for
automatic configuration methods. We compare these proposals with a
pure GE method recently tested for the one-dimensional bin packing
problem (1BPP) [17].

Experimental results show that irace using the parameter space
generated by our method finds better algorithms than the GE method.
We confirm these results by extending our analysis to the permutation
flowshop with weighted tardiness problem (PFSP-WT).

This paper is structured as follows. First, we examine related works
and we describe the GE method. Second, we explain our proposal for

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.05.020
http://dx.doi.org/10.1016/j.cor.2014.05.020
http://dx.doi.org/10.1016/j.cor.2014.05.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.05.020&domain=pdf
mailto:fmascia@ulb.ac.be
mailto:manuel.lopez-ibanez@ulb.ac.be
mailto:jeremie.dubois-lacoste@ulb.ac.be
mailto:stuetzle@ulb.ac.be
http://dx.doi.org/10.1016/j.cor.2014.05.020
http://dx.doi.org/10.1016/j.cor.2014.05.020

F. Mascia et al. / Computers & Operations Research 51 (2014) 190-199 191

generating parameter spaces from a grammar. Third, we apply our
proposal to the 1BPP, compare it to the GE method from [17] and test
it on a new, more challenging case study on the PFSP-WT. Finally, we
present our conclusions and discuss the new research directions
opened by this paper.

2. Top-down vs. bottom-up approaches for automatic
algorithm design

2.1. Top-down approaches

Automatic algorithm configuration methods were conceived
for tuning the parameters of stochastic optimization algorithms
given a set of training instances representative of the problem of
interest. These methods allow algorithm designers to test many
more parameter configurations than what is typically feasible
when algorithms are tuned by hand in an ad-hoc manner. More-
over, automatic algorithm configuration methods avoid inherent
biases of human designers when selecting which parameters to
tune and which experiments to carry out.

When designing an optimization algorithm for a specific
problem, algorithm designers are likely to implement alternative
design choices (either new or coming from the literature) for
further testing. It is only a small step to implement these design
choices as parameters within an algorithm [19]. Such an algorithm
quickly becomes an algorithm framework, with components that
represent alternative design choices exposed as parameters of the
framework. A particular instantiation of the parameters of such a
framework leads to the selection of specific design choices and,
hence, a specific algorithm. By applying automatic configuration
to algorithm frameworks, it is therefore possible to automatically
design algorithms for specific problems. We call this method a
top-down approach, and we can find various examples in the
literature.

KhudaBukhsh et al. [10] built a parametrized algorithmic
framework for the satisfiability (SAT) problem from components
of algorithms that had shown good results in previous editions of
the SAT competition. By setting the parameters of the framework
to specific values, they could instantiate various successful SAT
solvers and generate new variants. They used ParamiLS [3] to find
the best variant to tackle specific types of SAT instances. The multi-

objective ant colony optimization (MOACO) framework [11] fol-
lows a similar idea. Unique algorithmic components of various
MOACO algorithms from the literature have been identified and
incorporated into a common algorithmic framework, where alter-
native components may be selected by means of parameters. This
framework was able to instantiate most of the MOACO algorithms
from the literature and to generate hundreds of new algorithm
designs. Using irace [6], it was possible to find a configuration of
the framework that outperformed the MOACO algorithms from the
literature for the bi-objective travelling salesman problem.

2.2. Bottom-up approaches

A bottom-up approach combines algorithmic components, which
can range from a single operator to fully-functioning procedures, to
form valid expressions in a language, which can be either a pseudo-
code or a specific programming language. In contrast to top-down
approaches, in a bottom-up approach there is no need for a general
algorithm framework, where many higher-level alternative design
choices co-exist. This provides a greater flexibility when defining the
space of valid algorithms, but it complicates the representation of
valid algorithms and the search for the best one.

In bottom-up approaches, the space of valid algorithms is
often given as a context-free grammar, that is, a set of production
rules that describe how terminal and non-terminal symbols
can be combined to produce valid sentences in the language.
Fig. 2 shows an example grammar expressed in Backus-Naur
Form (BNF), where each production rule is of the form
<non—terminal > :: = < expression >. Each rule describes
how the non-terminal symbol on the left-hand side can be
replaced by the expression on the right-hand side. Expressions
are strings of terminal and/or non-terminal symbols. If there are
alternative strings of symbols for the replacement of the non-
terminal on the left-hand side, the alternative strings are sepa-
rated by the symbol “|”.

How to search for the best algorithm in the design space
defined by the grammar and how to represent the sequence of
derivation rules that represent an algorithm is the object of
different methodologies in genetic programming (GP) [15,20].
In the context of generating stochastic optimization algorithms,
Caseau et al. [12] design hybrid large neighborhood search algo-
rithms for vehicle routing problems by using a genetic algorithm
that applies crossover and mutation to a list of algebraic terms
extracted from the grammar. Fukunaga [13,14] uses a strongly
typed genetic programming algorithm to evolve Lisp-like
S-expressions that represent local search heuristics for SAT. Three
recent works [16,17,21] use grammatical evolution (GE) [18], which
is a variant of GP that represents an instantiation of the grammar
as a sequence of integers. Given its simplicity and its recent
popularity for the automatic bottom-up design of algorithms,
we explain this latter approach in more detail in the following
section. In a hyper-heuristics context, the bottom-up approaches

<select_bins> remove_items_from_bins() <repack>

highest_filled(<num>, <ignore>, <remove>)
lowest_filled(<num>, <ignore>, <remove>)

random_bins (<num>, <ignore>, <remove>)
gap_lessthan(<num>, <threshold>, <ignore>, <remove>)
num_of_items(<num>, <numitems>, <ignore>, <remove>)

best-fit-decreasing | worst-fit-decreasing

1: x := randomized first_fit()
2: for i =1 to 100 iterations do
3: x* :=ig.step(x)
4: if fitness(z*) < fitness(x) then
5: ri=a"
6: end if
7. end for
8: return =
Fig. 1. Algorithmic scheme of the IG for the 1BPP.
1: <start> ::=
2: <select_bins> ::= <type> | <type> <select_bins>
3: <type> ::=
4: |
5: |
6: |
7: |
8: <num> ::= 2 | 5| 10 | 20 | 50
9: <threshold> ::= average | minimum | maximum
10: <numitems> ::=1 | 2 | 3 | 4| 5] 6
11: <ignore> ::= 0.995 | 0.997 | 0.999 | 1.0 | 1.1
12: <remove> ::= ALL | ONE
13: <repack> ::=
14: | first-fit-decreasing

Fig. 2. Grammar for generating ig_step in Fig. 1 for the 1BPP [17].

Download English Version:

https://daneshyari.com/en/article/475543

Download Persian Version:

https://daneshyari.com/article/475543

Daneshyari.com

https://daneshyari.com/en/article/475543
https://daneshyari.com/article/475543
https://daneshyari.com

