
Converging to periodic schedules for cyclic scheduling problems
with resources and deadlines

Benoît Dupont de Dinechin a, Alix Munier Kordon b,n

a Kalray, 445 rue Lavoisier, 38330 Montbonnot Saint Martin, France
b Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France

a r t i c l e i n f o

Available online 13 March 2014

Keywords:
Cyclic scheduling
Throughput maximization
Resource constrained project scheduling
problem
Software pipelining

a b s t r a c t

Cyclic scheduling has been widely studied because of the importance of applications in manufacturing
systems and in computer science. For this class of problems, a finite set of tasks with precedence
relations and resource constraints must be executed repetitively while maximizing the throughput.
Many applications also require that execution schedules be periodic i.e. the execution of each task is
repeated with a fixed global period w.

The present paper develops a new method to build periodic schedules with cumulative resource
constraints, periodic release dates and deadlines. The main idea is to fix the period w, to unwind the
cyclic scheduling problem for some number of iterations, and to add precedence relations so that the
minimum time lag between two successive executions of any task equals w. Then, using any usual
(not cyclic) scheduling algorithm to compute task starting times for the unwound problem, we prove
that either the method converges to a periodic schedule of period w or it fails to compute a schedule. A
non-polynomial upper bound on the number of iterations to unwind in order to guarantee that cyclic
precedence relations and resource constraints are fulfilled is also provided. This method is successfully
applied to a real-life problem, namely the software pipelining of inner loops on an embedded VLIW
processor core by using a Graham list scheduling algorithm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A cyclic scheduling problem is usually defined by a set of tasks
that has to be repeated infinitely. This class of problems has been
widely studied in the last few years because of the importance of
practical applications in different fields (see the surveys [19,24]). For
manufacturing systems, they may be found in mass production
(Crama [9]; Amstrong et al. [2]; Chen et al. [5]; Kim et al. [20]).
Tasks usually represent operations of the production process of a
manufactured object for which a large number of copies are to be
produced. In computer science, cyclic scheduling appears with soft-
ware pipelining (Gasperoni and Schwiegelshohn [15]; Allan et al. [1];
Rau [28]), that is, compiler instruction scheduling of the inner
program loops on instruction-level parallel or pipelined processor
cores. Cyclic scheduling problems were also considered in the
context of real-time systems (Cucu and Sorel [10]; Šůcha et al. [30]).

Despite originating from different application domains, two
common assumptions appear in most previous works. First, rela-
tionships between a finite set of generic tasks are modeled with a
bi-valued oriented graph G¼ ðT ;A;ℓ;hÞ defined as follows: T is a set of

generic tasks, each of them with a fixed duration piZ0. Each arc
e¼ ði; jÞAA is associated with a pair of values ðℓij;hijÞAZ2 and defines
the infinite set of precedence constraints 8k4 max f0; �hijg;
tði; kÞþℓijrtðj; kþhijÞ where tði; kÞ (resp.tðj; kþhijÞ) is the starting
time of the kth (resp.kþhijth) execution of generic task i (resp.j).
Resource constraints (number of machines, parallel or dedicated
processors, bandwidth, etc…) are usually fixed. The objective is to
find a feasible schedule with the maximum throughput.

The second common assumption is that solutions are constrained
to periodic schedules, that is, there exists a period wAQþ �f0g such
that, for every pair ði; kÞAT �N�f0g, tði; kÞ ¼ tði;1Þþðk�1Þw. Even if
this limitation may lead to sub-optimal solutions (since in the
presence of resources, periodic schedules are not dominant [19]), it
has obvious implementation advantages; thus, most authors dealing
with a practical application have limited their study to this simple
class of schedules. In this paper, we limit our study to periodic
schedules with the objective of minimizing the period, which is
equivalent to maximizing the throughput.

The determination of a periodic schedule with the maximum
throughput for a bi-valued graph (without resource limitations) is
solved polynomially: indeed, Ramchandani [27] solved it for hijZ0
and ℓij ¼ pi40, 8e¼ ði; jÞAA. Chrétienne in [6] and Cohen et al. in [8]
proved that the throughput of the earliest schedule equals the
maximum throughput of a periodic schedule. All these results were

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.03.004
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: Benoit.Dinechin@kalray.eu (B. Dupont de Dinechin),

Alix.Munier@lip6.fr (A. Munier Kordon).

Computers & Operations Research 51 (2014) 227–236

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.03.004
http://dx.doi.org/10.1016/j.cor.2014.03.004
http://dx.doi.org/10.1016/j.cor.2014.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.03.004&domain=pdf
mailto:Benoit.Dinechin@kalray.eu
mailto:Alix.Munier@lip6.fr
http://dx.doi.org/10.1016/j.cor.2014.03.004
http://dx.doi.org/10.1016/j.cor.2014.03.004


extended separately by Lee and Park [22,23] and Munier [25]
to potentially negative values of ℓij and hij. Note that Chrétienne in
[7] also studied the existence of a cyclic (not necessarily periodic)
schedule with deadlines and the structure of the latest schedule for a
bi-valued graph with hijZ0 and ℓij ¼ pi40, 8e¼ ði; jÞAA.

The computation of a periodic schedule in the presence of
resource limitations (with or without release dates and deadlines)
is a difficult problem. The complexity is clearly strongly NP�hard,
since it includes the computation of a classical (acyclic) scheduling
problem of a given length under resource constraints. Many
authors have noticed that it may be modeled with Integer Linear
Programming. In the setting of periodic cyclic scheduling of inner
loop instructions on a Very Long Instruction Word (VLIW in short)
processor core, Govindarajan et al. [16] expressed their problem by
using a time-indexed formulation. This formulation was improved
by Eichenberger and Davidson [13] in order to solve practical cases
with a commercial solver. Dupont de Dinechin developed another
formulation [12] inspired by the classic non-preemptive time-
indexed formulation of Pritsker et al. [26] for the Resource
Constrained Project Scheduling Problem (RCPSP in short) [3].

The major drawback of the time-indexed formulations is that
the numbers of variables and equations grow with the period.
However, Dupont de Dinechin showed that large neighborhood
search techniques were effective for heuristically solving problem
instances with hundreds of generic tasks [11]. Other formulations
were also developed to model resource limitations more effi-
ciently. Hanen in [18] observed that the problem for dedicated
processors may be modeled by Integer Linear Programming with
the starting time of the first execution of the generic tasks. This
formulation was considered by Brucker and Kampmeyer in [4] to
test its efficiency for several particular classes of cyclic scheduling
problems. Another formulation was developed and tested by Šůcha
and Hanzálek in [29] for typed task systems.

Heuristics based on list scheduling are popular among practi-
tioners to handle resource constraints: when a resource is avail-
able, it is allocated to a ready task of highest priority [17].
In particular, Gasperoni and Schwiegelshohn in [15] proposed a
simple technique to build periodic schedules in the presence of
resource constraints, assuming ℓij ¼ pi40 and hijZ0 for any arc
ði; jÞAA. A periodic schedule t1ði;1Þ, iAT of period w1 is first
computed from the bi-valued precedence graph ignoring resource
constraints. A (noncyclic) acyclic precedence graph G⋆ ¼ ðT ;A⋆;ℓÞ
is then built by considering only arcs e¼ ði; jÞAA of null heights (i.e.
with hij ¼ 0) such that t1i þℓijrt1j with t1i ¼ t1ði;1Þmodw1. A list
schedule of G⋆ with the original resource constraints yields a
noncyclic schedule of makespan w. A periodic schedule is then
built by repeating the (acyclic) schedule obtained with period w.
The performance ratio is close to 2 for identical machines.

Other cyclic scheduling heuristics that build periodic schedules
have been proposed for loop software pipelining on VLIW proces-
sor cores. In particular, the modulo scheduling framework [28] uses
a job-based list scheduling (i.e. at each step of the algorithm,
available tasks are listed and the algorithm chooses a task with a
highest priority) extended with backtracking. Assuming a period
w, the starting times of the scheduled operations are considered
modulus by w for handling the resources (i.e. any task i for which
its first execution tði;1Þ is fixed requires its resources at time
tði;1Þmodw). This heuristic is attempted for increasingly larger
values of the period w until it succeeds.

The main contribution of this paper is to present a new method
to build periodic schedules with periodic release dates, deadlines
and complex resource limitations. A feasible periodic schedule is
built using a scheduler (heuristic or optimal) for the associated
noncyclic scheduling problem. An arbitrary period w is fixed and
the scheduler computes the successive starting times of the generic
tasks. In favorable cases, our algorithm converges to a feasible

periodic schedule of period w. Otherwise, it must be restarted with
a larger value for the period. Resource constraints are a cyclic
extension of the RCPSP, where resources are divided into P classes,
each of them composed by a fixed number of identical machines.
Each generic task iAT requires a subset of resources during each
execution defined by a vector bi of size P.

The bi-valued graph G is supposed to be strongly connected
and to comprise a fictitious task 0 from T that is scheduled
periodically with fixed period w. We show that this assumption
allows the association to any other task from T of periodic release
dates and deadlines, which are characterized by critical paths of G
for the period w.

The main idea developed in this paper is to add fictitious
precedence relations (i,i), 8 iAT with ℓii ¼w and hii ¼ 1 called
regularizing precedence relations and to compute a feasible
schedule (using as example a list scheduling algorithm) after
unwinding the scheduling problem. The minimum time lag
between two consecutive executions of a same generic task is
then w. Because of the presence of periodic release dates and
deadlines, the number of iterations for which this difference is
strictly greater than w is bounded in any feasible schedule; we
show then that after a limited number of iterations, for any integer
Δ40, the difference between Δ consecutive executions of each
generic task is exactly w.

Afterward, two lower bounds on Δ are expressed to ensure that
a feasible periodic schedule of period w may be built from the
unwound schedule. The first bound Δ1 is the minimum for
fulfilling the precedence relations. The other bound Δ2 is the
minimum for satisfying the resource constraints.

A case study coming from an actual industrial problem is lastly
presented to illustrate our method. The problem is to find a
periodic schedule for inner loop operations on an embedded VLIW
processor core of the Lx/ST200 family [14]. Benchmarks are
extracted from real-life programs, each of them with several inner
loops. The acyclic scheduling heuristic used here is a Graham list
scheduling algorithm with a priority proportional to an upper
bound of the longest path to a final task. Experimental results are
compared to the near-to-optimal modulo scheduling method
developed by Dupont de Dinechin et al. in [12] and with lower
bounds of the period.

Organization of the paper is as follows. Section 2 presents some
additional notations and the computation of release dates and
deadlines. An example coming from [29] illustrates our notations.
Section 3 is devoted to the convergence proof of any feasible
schedule after the regularizing precedence relations are added.
Section 4 shows how to build a feasible periodic schedule from the
feasible (not necessarily periodic) schedule obtained in the pre-
vious section. A minimum number of iterations required to fulfill
the cyclic precedence relations and resource constraints is also
evaluated. Section 5 presents our case study. Section 6 is our
conclusion.

2. Basic Notations

The aim of this section is to present formally the problem
tackled in this paper.

2.1. Generic tasks and precedence relations

Let T ¼ f0;…;ng be the set of generic tasks, nZ1. For any
integer ν40 and task iAT , 〈i;ν〉 denotes the νth execution of i,
each of them with duration piZ0.

Precedence relations are defined by a bi-valued directed and
strongly connected graph G¼ ðT ;A;ℓ;hÞ: each arc e¼ ði; jÞAA is
associated with a pair of values ðℓij;hijÞAZ2 and corresponds to the

B. Dupont de Dinechin, A. Munier Kordon / Computers & Operations Research 51 (2014) 227–236228



Download	English	Version:

https://daneshyari.com/en/article/475547

Download	Persian	Version:

https://daneshyari.com/article/475547

Daneshyari.com

https://daneshyari.com/en/article/475547
https://daneshyari.com/article/475547
https://daneshyari.com/

