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a b s t r a c t

The multistage Stochastic Linear Programming (SLP) problem may become numerically intractable for
huge instances, in which case one can solve an approximation for example the well known multistage
Expected Value (EV) problem. We introduce a new approximation to the SLP problem that we call the
multistage Event Linear Programming (ELP) problem. To obtain this approximation the SLP constraints
are aggregated by means of the conditional expectation operator. Based on this new problem we derive
the ELP heuristic that produces a lower and an upper bound for the SLP problem. We have assessed
the validity of the ELP heuristic by solving large scale instances of the network revenue management
problem, where the new approach has clearly outperformed the EV approach. One limitation of this
paper is that it only considers randomness on the right-hand side, which is assumed to be discrete and
stagewise independent.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Multistage Continuous Stochastic Linear Programming
(MCSLP) problem corresponds to a linear programming problem
with uncertainty in some of its parameters and with several
decision stages. For notational simplicity, considering that all the
problems here are multistage, we will drop the M and C and will
use the shorter form SLP instead. The main feature of the SLP
problem is that the uncertain parameters are revealed gradually
over time and our decisions should be adapted to this process. The
relevance, applications, properties, approaches and solution meth-
ods of this problem can be found in [4,17,32], among others.
To address optimization problems under uncertainty one can use
different approaches such as chance constraint optimization [28],
robust optimization [24] and scenario based optimization [4],
among others. In this paper we will focus on the last approach.

The SLP problem with a continuous stochastic process is, in
general, numerically intractable. To overcome this difficulty one can
approximate the original stochastic process by discretizing it. Of
course, the quality of the approximation will depend on the quality
of the discretization [25]. The discretization process consists in
approximating the original stochastic process by a stochastic process

with a finite support which can be represented by a scenario tree.
Thus, the first difficulty in scenario based optimization corresponds
to built a representative and tractable scenario tree. See [9,15],
among others. Once a representative scenario tree has been built
one can write the so-called deterministic equivalent problem which
corresponds to a large scale structured linear programming (LP)
problem.

The second difficulty corresponds to solve this LP problem.
State of the art optimization software for example IBM ILOG CPLEX
Optimizer [16], or CPLEX for short, can be used to successfully
solving SLP instances of moderate size. However, for many SLP
instances one needs to use alternative methods which can be
classified into exact and approximate ones. Exact methods can
deal with a large number of scenarios and are based on Lagrangian
relaxation [13], Benders decomposition [14] and interior point
methods [6], among others. The performance of these optimiza-
tion methods can be enhanced by using large computing systems
(parallel computing, grid computing, etc.) for example in [21].
However, if the number of scenarios becomes too large, exact
methods are impractical. In this case, either one solves the SLP
problem approximately or one solves an approximation to the SLP
problem. This is the case of schemes such as scenario aggregation
[19], scenario sampling [33], stochastic dynamic programming
scenario refinement [5], approximate dynamic programming
[27], and multistage stochastic decomposition [29], among others.
However, even an approximated solution of the SLP problem by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.06.010
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ34 914888322.
E-mail address: cesar.beltran@urjc.es (C. Beltran-Royo).

Computers & Operations Research 51 (2014) 237–250

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.06.010
http://dx.doi.org/10.1016/j.cor.2014.06.010
http://dx.doi.org/10.1016/j.cor.2014.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.010&domain=pdf
mailto:cesar.beltran@urjc.es
http://dx.doi.org/10.1016/j.cor.2014.06.010
http://dx.doi.org/10.1016/j.cor.2014.06.010


the Sample Average Approximation method requires an exponen-
tial number of sampled scenarios in order to attain a reasonable
accuracy [31].

In [7] it is presented an iterative procedure, based on constraint
aggregation, to fully solve stochastic programming problems with
a convex cost and linear constraints. The idea is to reduce the
number of constraints in the original problem by replacing them
by aggregated constraints, which are certain weights combinations
of the original ones. The method generates a sequence of problems
with aggregated constraints whose iterates converge to the
optimal solution set of the original problem. In contrast, the
heuristic method we present is based on the so-called multistage
Event Linear Programming (ELP) problem which approximates the
SLP one. This approximation is also based on constraint aggrega-
tion, however its objective is not to fully solve the original SLP
problem but to compute a good suboptimal solution and a good
cost lower bound. The second difference is that in [7] the main
computations are performed in the space of the original SLP
problem whose dimension may be huge, whereas in the approach
we present, the main computations are performed in the space of
the ELP problem whose dimension is drastically smaller than the
original one. The third difference is that our approach uses the
probability distribution of the stochastic parameters as the aggre-
gate weights in contrast with [7], which uses the level of
infeasibility of the current iterate for a given constraint, as the
corresponding aggregate weight.

In this context it is useful to have some cost bound in order to
assess the quality of the approximated solution. One of the oldest
bounds is the so-called wait-and-see cost lower bound which can
be obtained by solving the SLP problem without satisfying the
nonanticipativity constraints [4]. Bounds based on Jensen's or on
Edmundson–Madansky inequalities can be found in [4]. In [34]
Jensen's bound is improved by relaxing certain constraints and
associating dual multipliers with them. Another type of bound in
stochastic programming is obtained by aggregation of constraints,
variables or stages [2,35]. Such approximations are shown to
provide bounds if the randomness appears exclusively either in
the objective or in the right-hand side (rhs). Kuhn [20] constructs
two discrete and stage-aggregated stochastic programs which
provide upper and lower bounds on the SLP optimal cost and
are numerically tractable. In the framework of the so-called
sample average approximation of the SLP problem, one can infer
statistical bounds for the SLP solution value as in [30].

One of the most popular approximations to the SLP problem is
the multistage Expected Value (EV) problem, which replaces the
stochastic parameters of the SLP problem by their expected value.
To derive the EV problem, the scenario tree associated to the SLP
problem, is reduced into a degenerate scenario tree with one
scenario. That is, the EV problem approximates the SLP problem
by ignoring uncertainty. As an alternative to the EV problem, we
introduce the multistage Event Linear Programming (ELP) pro-
blem, which also approximates the SLP problem but without
ignoring uncertainty. The ELP problem takes into account uncer-
tainty in a simplified way: roughly speaking, it approximates the
multistage scenario tree by a sequence of connected two-stage
scenario trees (see Section 4). As far as we know such approach
has never been proposed in the literature and it could be useful in
the cases where the SLP problem was numerically intractable.

In this paper we will concentrate on the SLP problem with
randomness appearing exclusively in the rhs of the constraints,
which is assumed to be discrete and stagewise independent. In
this case, the bound given by the EV problem, corresponds to
Jensen's bound. We will prove that the ELP problem also gives a
cost lower bound and try to answer the following questions: Is the
ELP bound tighter than the EV one? Is the ELP problem tractable?
Is it possible to derive good SLP solutions by using the ELP

solutions? What is the computational performance of the ELP
heuristic in the case of large scale instances? To answer these
questions we have used a testbed of large scale instances of the
network revenue management problem (up to 393 millions of
variables and 357 millions of constraints). The average CPLEX time
for the EV, ELP and SLP approaches has been 198, 328 and 1995 s,
respectively (CPLEX has failed to solve 22% of the instances when
using the SLP approach). The average worst case optimality gap
for the EV and ELP approaches, has been 3.62% and 0.45%,
respectively.

Thus, the objectives of this paper are to introduce the ELP
problem, to study some of its theoretical properties, to compare it
to the EV problem, to analyze the computational effort to solve
large scale ELP instances and to consider a scheme for deriving a
(hopefully good) feasible solution for the SLP problem. With these
objectives in mind, in Section 2 we describe the well known SLP
problem and the scenario tree structure. In Section 3 we state
the EV problem. In Section 4 we introduce the ELP problem and
the event spike structure. In Section 5 we state and prove the
theoretical results concerning the EV and the ELP bounds. In
Section 6 we see an algorithm for obtaining feasible SLP solutions
after solving the EV and ELP problems. Finally, in Section 7 we
present the computational results of comparing the EV, ELP and
SLP solution values in a large testbed of instances of the network
revenue management problem that has been chosen as the pilot
case to study the effectiveness of the ELP approach.

2. The multistage LP problemwith a stochastic right-hand side

The following parameters, indexes and index sets, will be used
throughout the paper.

t Index for stages, tAT ¼ f1;…; Tg
k Index for groups of nodes of the scenario tree,

kAKt ¼ f1;…;Ktg 8 tAT
Two nodes are in the same group k if they have the
same ancestor node (see Section 2.1) 8 tAT

l Index for nodes within the same group of nodes,
lALt ¼ f1;…; Ltg (see Section 2.1) 8 tAT

T þ Stands for f2;…; Tg
T � Stands for f1;…; T�1g
TKtLt Stands for T �Kt � Lt 8 tAT

Let us consider the following multistage deterministic LP
problem that we name PDLP:

min
x

∑
tAT

c>t xt

s:t: A1x1 ¼ b1

∑
t�1

τ ¼ 1
BtτxτþAtxt ¼ bt 8 tAT þ

xZ0;

where ct is the vector of the objective function coefficients, A1 and
b1 are the constraint matrix and the right-hand side (rhs) related
to stage t¼1. For all tAT þ , Btτ is the constraint matrix of the
decision vector xτ related to stage τot, At is the constraint
matrix of the decision vector xt and bt is the rhs corresponding
to stage t.

In real life instances, any of the parameters of PDLP may be
stochastic. In order to introduce our new approach, we consider
a simpler stochastic version of PDLP where the rhs bt is the only
random vector. A stochastic rhs typically reflects uncertainty in
supply and/or demand. This is very often the case for problems
arising in manufacturing, telecommunications, transportation and
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