
A best possible on-line algorithm for two-machine flow shop
scheduling to minimize makespan$

Peihai Liu n, Xiwen Lu
Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai 200237, People's Republic of China

a r t i c l e i n f o

Available online 21 June 2014

Keywords:
Scheduling
Flow shop
Online
Competitive ratio

a b s t r a c t

We address a two-machine flow shop on-line scheduling problem. Jobs arrive over time. Each job
becomes available for processing at its release time after which it must be processed without
preemption on the first machine and then on the second machine. The objective is to minimize the
makespan. We provide a best possible deterministic on-line algorithm with a competitive ratio of
ð

ffiffiffi
5

p
þ1Þ=2. Computational experiments on randomly generated problem instances are performed and

the results show that the online algorithm is very useful to obtain near-optimal solutions.
& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following problem. There are two machines
MA and MB, and a set of jobs J ¼ fJ1; J2;…; Jng, where n is not known
in advance. Each job JjA J consists of two successive operations OA

j

and OB
j , where OA

j is processed first for aj time units on MA, and
then OB

j is processed for bj time units on MB. For convenience, we
call aj A-processing time and bj B-processing time. Jobs arrive over
time. Each job JjA J becomes available for processing at its
nonnegative release time rj. At any time, each machine can handle
only one job and each job can be processed on only one machine.
The objective is to minimize the makespan, i.e., the maximum
completion time of jobs on MB. Preemption is not allowed. Using
the problem classification of Lawler et al. [5], our problem is
written as F2jrj;on� linejCmax.

The quality of an on-line algorithm is typically assessed by its
competitive ratio: the nearer the ratio approaches 1, the better the
algorithm is. We say that an algorithm is ρ-competitive if for any
input instance, it always returns a feasible solution with an
objective value not greater than ρ times the optimal (off-line)
solution.

The two-machine flow shop problem with the objective of
minimizing the makespan has been discussed in the operation
research literature for several decades. In the special case when all
rj are equal, the well-known algorithm of Johnson [3] solves the
problem F2jjCmax in Oðn log nÞ time. In the general case when the

release times may be different, the problem F2jrjjCmax is shown to
be NP-hard by Lenstra et al. [6] in the strong sense.

Four heuristics are described by Potts [8] for F2jrjjCmax. He
shows that for three of them, the worst-case ratio is 2, and each
has a running time of O(n log n). The fourth heuristic, which is
based on the iterative use of the third one, has a better worst-case
ratio of 5/3, and a time requirement of Oðn3 log nÞ. Additionally,
a polynomial time approximation scheme (PTAS) is designed by
Hall [2], i.e., a family of algorithms that, given an arbitrary small
but fixed ε40, finds a schedule in polynomial time and has a
worst-case ratio of at most 1þϵ. Kashyrskikh et al. [4] give an 1.5-
approximation algorithm based on the fourth heuristic of Potts [8].

For the on-line open shop scheduling on two machines, Chen
et al. [1] show that the greedy algorithm achieves the competitive
ratio of 3/2 and this is optimal for scheduling without preemp-
tions. When preemption is allowed, a 5/4 competitive algorithm
exists and this is optimal [1]. For the on-line flow shop scheduling
on two machines, Vestjens [10] shows that any deterministic on-
line algorithm must have a competitive ratio of at least ð1þ

ffiffiffi
5

p
Þ=2.

In this paper, we study on-line version of the two-machine flow
shop scheduling. We present a deterministic on-line algorithm
and show that it is best possible.

2. Preliminaries

Throughout the paper we use the following notations:

� aðJ Þ, the total A-processing time of all jobs in J ;
� bðJ Þ, the total B-processing time of all jobs in J ;
� Soj ðsÞ; oAfA;Bg, the starting time of operation Oj

o; oAfA;Bg in
schedule s;

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.06.014
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

☆This work was supported by the National Nature Science Foundation of China
(11101147 and 11371137) and the Fundamental Research Funds for the Central
Universities.

n Corresponding author.
E-mail addresses: pliu@ecust.edu.cn (P. Liu), xwlu@ecust.edu.cn (X. Lu).

Computers & Operations Research 51 (2014) 251–256

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.06.014
http://dx.doi.org/10.1016/j.cor.2014.06.014
http://dx.doi.org/10.1016/j.cor.2014.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.014&domain=pdf
mailto:pliu@ecust.edu.cn
mailto:xwlu@ecust.edu.cn
http://dx.doi.org/10.1016/j.cor.2014.06.014
http://dx.doi.org/10.1016/j.cor.2014.06.014


� Co
j ðsÞ; oAfA;Bg, the completion time of operation Oj

o; oAfA;Bg
in schedule s;

� SðJ ; sÞ, the minimum starting time of jobs in J in schedule s;
� Cmax(s), the makespan, i.e., the objective value of schedule s.

Without causing any confusion, we also write for short Sj(s)
instead of SAj ðsÞ as the starting time of Jj on MA in schedule s and
write for short Cj(s) instead of CB

j ðsÞ as the completion time of Jj on
MB in schedule s.

Some lower bounds on the offline optimal makespan, which
are needed in the subsequent analysis, are introduced. Let π be an
offline optimal schedule. Given a job set J , an obvious lower
bound based on the total A-processing times is

CmaxðπÞZSðJ ;πÞþaðJ Þ ð1Þ
It is well known that there exists an optimal schedule solution

that is a permutation schedule in which the same job order is used
on both machines. Hence we only consider schedules in which the
same job order is used on both machines.

In general, each job Ji has a set of predecessors which are jobs
that are known to be sequenced before Ji in an optimal schedule
and a set of successors which are jobs that are known to be
sequenced after Ji in an optimal schedule. Let J 1 be the set of all
predecessors in J of Ji and J 2 be the set of all successors in J of Ji.
Thus all operations Oj

A; JjAJ 1 are sequenced before OA
i and all

operations Oj
B; JjAJ 2 are sequenced after OB

i . Therefore, a more
complicated lower bound is

CmaxðπÞZSðJ ;πÞþaðJ 1ÞþaiþbiþbðJ 2Þ ð2Þ
Here we refer Ji as a partition job since Ji partitions J \fJig into two
subsets J 1 and J 2 where all jobs in J 1 are represented as OA

j and
all jobs in J 2 are represented as OB

j in the lower bound on the
optimal makespan CmaxðπÞ.

3. An on-line algorithm

In this section, we deal with the on-line two-machine flow
shop scheduling problem. We first present a deterministic on-line
algorithm and then show the algorithm is ð1þαÞ-competitive,
where α¼ ð

ffiffiffi
5

p
�1Þ=2� 0:618. For convenience, we shall call the

jobs with ajr ð1þαÞbj A-small jobs and call the jobs with aj4
ð1þαÞbj B-small jobs.

An online scheduling rule chooses a job to schedule at time t, or
may choose to leave the machine idle, without using any informa-
tion from jobs j with rj4t. If an algorithm wants to guarantee a
better performance bound, then it needs both a waiting strategy
and a selection strategy. A waiting strategy sometimes allows the
algorithm to wait for more information. A selection strategy will
tell the algorithm how to select a job among the available jobs.
The basic idea behind the algorithm is that, if one of the available
jobs is an A-small job, then we schedule the job with the smallest
A-processing time among the available A-small jobs; otherwise,
we decide whether to schedule the job with the largest
A-processing time, a job other than the job with the largest
A-processing time, or no job at all.

In the following heuristic, the following notations are used.

� U(t) denotes the set containing all jobs that have arrived at or
before time t and that have not been started by time t;

� Asmall(t) indicates the set of A-small jobs in U(t);
� Bsmall(t) indicates the set of B-small jobs in U(t);
� p(t) denotes the index of the job with the largest A-processing

time in U(t);
� jJ j denotes the number of the jobs in the corresponding set J .

The set U(t) can be interpreted as the set of jobs that still need
to be entirely processed at time t.

Algorithm H. Processing strategy for machine A:

Step 0. If MA is idle and a job is available at time t, determine
Asmall(t) and Bsmall(t). Otherwise, wait until the
machine is idle and a job is available.

Step 1. If AsmallðtÞa∅, select a job with the smallest A-
processing time in Asmall(t) and schedule it on MA.

Step 2. If AsmallðtÞ ¼∅ and jBsmallðtÞj41, then

Step 2A. Schedule JpðtÞ on MA if tþaj4rpðtÞ þαapðtÞ þð1þαÞbj for
all jobs Jj other than JpðtÞ in Bsmall(t).

Step 2B. Schedule Jj on MA if tþajrrpðtÞ þαapðtÞ þð1þαÞbj for
some job Jj other than JpðtÞ in Bsmall(t).

Step 3. If AsmallðtÞ ¼∅ and jBsmallðtÞj ¼ 1, then

Step 3A. Schedule JpðtÞ if tZrpðtÞ þαapðtÞ;
Step 3B. Wait to the next arrival or the time rpðtÞ þαapðtÞ if

torpðtÞ þαapðtÞ.

Step 4. Goto Step 0.
Processing strategy for machine B:

Start jobs on MB in order of their nondecreasing completion
time on MA whenever MB is idle.

According to the algorithm, we know all A-small jobs are
assigned by Step 1 and all B-small jobs are scheduled by Steps
2 and 3. Note that if only one B-small job Jj is available and there is
no available A-small jobs, then the algorithm schedules no job and
waits either until time rjþαpj or until a new job arrives, which-
ever happens first. This means that at time t, ifMA is not busy, then
there is at most one available job and the job is a B-small job if it
exists. For the job Jj scheduled by Step 2B at time t, we can find
that it starts before rpðtÞ þαapðtÞ and its remaining A-processing
time at time rpðtÞ þαapðtÞ is not greater than ð1þαÞbj.

Let σ be the schedule generated by the Algorithm H and π be an
optimal schedule. Without loss of generality, we index jobs with
Jjð1r jrnÞ such that S1ðσÞr⋯rSnðσÞ. Similar to Potts [8], the
corresponding maximum completion time of σ can be written as
(shown in Fig. 1)

CmaxðσÞ ¼ SuðσÞþ ∑
v

i ¼ u
aiþ ∑

n

i ¼ v
bi; ð3Þ

for some u; vAf1;2;…;ng, where urv and u is chosen as small as
possible. Then, Ju is the first starting job at time 0 or starts exactly
after an idle interval onMA in σ. It is clear that the completion time
of operation OA

v coincides with the starting time of operation OB
v.

Similar to Kashyrskikh et al. [4], we refer to Jv as a transition job in
schedule σ, since the critical path passes via the operations of this
job from MA to MB.

By the algorithm, we know that MA can be idle at time t only
when no available jobs or there is only one available job and the
job is a B-small job at t. Thus we have the following claim.

Claim 1. Among jobs in fJjjur jrng, there can be at most one job
which is released before SuðσÞ.

Claim 2. If Jj is an A-small job and SjðσÞZSuðσÞ, then rjZSuðσÞ.

Proof. From the definition of u, we know that SuðσÞ starts at time
0 or starts exactly after an idle interval on MA in σ.

If Ju starts at time 0, i.e., SuðσÞ ¼ 0, then the conclusion
obviously holds.

P. Liu, X. Lu / Computers & Operations Research 51 (2014) 251–256252



Download English Version:

https://daneshyari.com/en/article/475549

Download Persian Version:

https://daneshyari.com/article/475549

Daneshyari.com

https://daneshyari.com/en/article/475549
https://daneshyari.com/article/475549
https://daneshyari.com

