# Accepted Manuscript

Title: Synthesis of maghemite nanoparticles, biodiesel and

hydrogen: One pot sequential reactions

Authors: Mookan Rengasamy, Sundaresan Mohanraj,

Krishnasamy Anbalagan, Velan Pugalenthi

PII: S0926-860X(17)30319-8

DOI: http://dx.doi.org/doi:10.1016/j.apcata.2017.07.019

Reference: APCATA 16324

To appear in: Applied Catalysis A: General

Received date: 9-4-2017 Revised date: 11-7-2017 Accepted date: 12-7-2017

Please cite this article as: Rengasamy Mookan, Mohanraj Sundaresan, Anbalagan Krishnasamy, Pugalenthi Velan, Synthesis of maghemite nanoparticles, biodiesel and hydrogen: One pot sequential reactions, Applied Catalysis A, Generalhttp://dx.doi.org/10.1016/j.apcata.2017.07.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## ACCEPTED MANUSCRIPT

### Synthesis of maghemite nanoparticles, biodiesel and hydrogen:

# One pot sequential reactions

# Mookan Rengasamy<sup>a</sup>, Sundaresan Mohanraj<sup>b</sup>, Krishnasamy Anbalagan<sup>b</sup> and Velan Pugalenthi<sup>b\*</sup>

<sup>a</sup>Department of Petrochemical Technology, Bharathidasan Institute of Technology,

Anna University, Tiruchirappalli - 620 024, Tamil Nadu, India.

<sup>b</sup>Department of Biotechnology, Bharathidasan Institute of Technology,

Anna University, Tiruchirappalli - 620 024, Tamil Nadu, India.

\*Corresponding author:

#### V. Pugalenthi

Department of Biotechnology

Bharathidasan Institute of Technology

Anna University

Tiruchirappalli – 620 024

Tamil Nadu, INDIA

Tel: +91-431-2407993 Fax: 0431-2407999

E-mail: pugalv@gmail.com

#### **Highlights:**

- Maghemite nanoparticles, Hydrogen, biodiesel and glycerol were simultaneously synthesized
- Dehydrogenation by methanolysis, reduction and transesterification reactions were sequentially performed in a single reactor
- In situ formed maghemite nanoparticles were acted as catalyst for biodiesel production
- High yield of *Pungamia pinnata* biodiesel and hydrogen was achieved
- The properties of resulting biodiesel agreed well with the ASTM standards

#### **ABSTRACT:**

#### Download English Version:

# https://daneshyari.com/en/article/4755504

Download Persian Version:

https://daneshyari.com/article/4755504

<u>Daneshyari.com</u>