
Optimal interval scheduling with a resource constraint

Enrico Angelelli n, Nicola Bianchessi, Carlo Filippi
Department of Economics and Management, University of Brescia, Contrada S. Chiara 50, 25122 Brescia, Italy

a r t i c l e i n f o

Available online 23 June 2014

Keywords:
Scheduling
Fixed job scheduling
Resource allocation
Complexity
Branch and price
Heuristics

a b s t r a c t

We consider a scheduling problem where n jobs have to be carried out by m parallel identical machines.
The attributes of a job j are a fixed start time sj, a fixed finish time fj, a resource requirement rj, and a
value vj. Every machine owns R units of a renewable resource necessary to carry out jobs. A machine can
process more than one job at a time, provided the resource consumption does not exceed R. The jobs
must be processed in a non-preemptive way. Within this setting, we ask for a subset of jobs that can be
feasibly scheduled with the maximum total value. For this strongly NP-hard problem, we first discuss an
approximation result. Then, we propose a column generation scheme for the exact solution. Finally, we
suggest some greedy heuristics and a restricted enumeration heuristic. All proposed algorithms are
implemented and tested on a large set of randomly generated instances. It turns out that the column
generation technique clearly outperforms the direct resolution of a natural compact formulation; the
greedy algorithms produce good quality solutions in negligible time, whereas the restricted enumeration
averages the performance of the greedy methods and the exact technique.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a set of n jobs and a set ofm parallel machines. Every
machine owns R units of a renewable resource, necessary to carry out
jobs. The attributes of a job j are a fixed start time sj and a fixed finish
time fj (j¼1,…,n). Furthermore, processing job j requires rj units of
resource available on the assigned machine and yields a value vj.
Every machine can process more than one job at a time provided the
resource consumption does not exceed R. The jobs must be processed
in a non-preemptive way. All data are positive integers.

In such an environment, we may be interested in at least three
types of problems:

� Does a feasible schedule exist for all jobs?
� Which is a subset of jobs that can be scheduled with the

maximum total value?
� Which is the minimum number of machines required to

schedule all jobs?

These problems are abstract versions of some challenges that may
arise in different real world situations, exemplified in the following:

� Consider a set of aircraft to be parked in an airport for land side
operations. Usually, the parking must take place during a fixed

interval of time, from the arrival of a flight to the departure of
the next one carried by the same aircraft. Sometimes, the
parking space layout is such that a same parking lot may be
occupied by either one large aircraft, or two (or more) smaller
ones, or even different combinations (a situation like this
happens, for instance, at Milano Malpensa airport, Italy).
We may look at aircraft as jobs and parking lots as machines,
where each parking lot is formed by a given number of parking
places that can operate independently or not. We may ask
whether it is possible to schedule all planned flights and, if not,
which ones to refuse.

� Consider a constellation of satellites equipped with instruments
for optical, radar or infra-red observation, whose mission is to
acquire images of specific areas of the Earth surface, in response
to customers' observation requests. Each image sent to a customer
generates a reward. In the design phase, simulated work plans
may be used to find the best hardware setting of each satellite.
According to the simulated work plan, image data files are
acquired by the satellite at planned acquisition times and trans-
mitted to a ground station at planned transmission times. Mean-
while, the files must be stored on given memory devices, working
in parallel. For convenience, files cannot be split among different
memory devices. We may look at files as jobs and memory
devices as machines, and ask whether it is possible to respect the
scheduled work and, if not, which is the minimum number of
additional memory devices that must be added, or which is the
maximum reward we can obtain by scheduling a subset of
the jobs.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.06.002
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: angele@eco.unibs.it (E. Angelelli),

bianche@eco.unibs.it (N. Bianchessi), filippi@eco.unibs.it (C. Filippi).

Computers & Operations Research 51 (2014) 268–281

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.06.002
http://dx.doi.org/10.1016/j.cor.2014.06.002
http://dx.doi.org/10.1016/j.cor.2014.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.002&domain=pdf
mailto:angele@eco.unibs.it
mailto:bianche@eco.unibs.it
mailto:filippi@eco.unibs.it
http://dx.doi.org/10.1016/j.cor.2014.06.002
http://dx.doi.org/10.1016/j.cor.2014.06.002


The above described problems (both in the decision and
optimization versions) can consider the generalization of, and
the link between, two well known and widely studied classes of
problems at the same time. The first class, known as interval
scheduling problems, includes problems where typically each job
claims for the exclusive assignment of one machine ðrj ¼ R;mZ1Þ.
The second class, known as resource allocation problems, includes
problems where jobs compete for the resources of a single machine
ðrjrR;m¼ 1Þ.

The feasibility question has been addressed in Angelelli and
Filippi [1]. In this paper we focus on the first optimality question,
the second one will be approached in a future work. Thus, our
problem can be explicitly defined as follows:

Operational Interval Scheduling with a Resource Constraint
(OISRC):

INSTANCE: m identical machines, with each machine owning R
units of a renewable resource; n jobs, requiring processing in time
interval ½sj; f jÞ, using rj units of resource and having a value vj
ðj¼ 1;…;nÞ.

QUESTION: Which is a job subset of maximum total value with
the property that each job can be processed by a machine so that no
two jobs processed by a same machine overlap and the resource
availability of each machine is always respected?

After discussing the complexity of OISRC and its connections
with interval scheduling and resource allocation, we give the
following contributions:

� an approximation result based on a greedy approach;
� a column generation technique based on a natural Dantzig–Wolfe

decomposition of a compact integer programming formulation;
� some simple greedy heuristics;
� a restricted enumeration heuristics;
� implementation of each proposed algorithm and testing on

randomly generated instances.

We show that the column generation technique offers a dramatic
speedup with respect to the direct solution of the integer pro-
gramming formulation, while the heuristic procedures illustrate
the tradeoff between computing time and quality of the obtained
solution.

2. Related literature

2.1. Interval scheduling

There is a sizable amount of the literature on interval schedul-
ing problems, but research on this subject has often been tailored
to the particular application. Here we mention only the more
relevant studies with respect to the present work. We refer to
Kolen et al. [29] and Kovalyov et al. [30] for an extensive treatment
of the literature on interval scheduling.

Dantzig and Fulkerson [17], Gertsbakh and Stern [22] and Gupta
et al. [24] among others study the Fixed Job Scheduling Problem
(FJS), where n interval jobs and m identical machines are given, and
the question concerns the existence of a feasible schedule for all
jobs. This feasibility question turns out to be equivalent to the
following, called Basic Interval Scheduling Problem in [29]: What is
the minimum number of machines necessary to schedule all jobs?
These basic problems can be solved in Oðn log nÞ time, which is the
best possible [24].

FJS has been generalized in various ways. Dondeti and Emmons
[20] consider two classes of machines and a cost for processing a
job depending on the machine class it is assigned to. A polynomial
time algorithm based on network flow techniques is proposed.
Huang and Lloyd [26] show that with three or more machine

classes the problem becomes NP-hard and they give some approx-
imation results. Bathia et al. [7] introduce availability intervals and
a hierarchical structure for machines, giving complexity and
approximation results. Kolen and Kroon [28] formalize and classify
the complexity of problems with compatibility classes between
jobs and machines.

Arkin and Silverberg [3], Bouzina and Emmons [10], Bathia
et al. [7] Kroon et al. [31] among others consider settings where a
value is associated with each job and the problem is to maximize
the value of processed jobs, ranging from polynomially solvable to
NP-hard problems.

Recently, Ng et al. [34] consider an interval scheduling problem
on unrelated machines, where each assignment of a job to a
machine yields a value, and the objective is to find a subset of jobs
and their feasible assignments so that the total value is max-
imized. For this strongly NP-hard problem, they propose an exact
algorithm based on a reduction to a maximum weight clique
problem and several heuristics.

2.2. Scheduling with a resource constraint

Problems in this class have been proposed in the literature
under different names. They differ from each other in the sense
that they can be seen as restrictions of more general problems.

Resource Allocation Problem (RAP) [18], also called Bandwidth
Allocation Problem (BAP) [16], is an optimization problem. Here, n
interval jobs, each one with a resource requirement rj and a value
vj (e.g., priority or profit), are given. The problem asks for a job
subset of maximum total value that can be feasibly scheduled on a
single machine with a given resource availability. A generalization
of RAP where the resource capacity varies over time was studied
as temporal knapsack problem in Bartlett et al. [6] and Caprara
et al. [12]. In Chen et al. [16] a particular case of RAP is studied
where job values are given as vj ¼ rjðf j�sjÞ. They also introduced
the Storage Allocation Problem (SAP) which is the restriction of
RAP to the case of storage layout.

The Dynamic Storage Allocation (DSA) is a decision version of SAP
where the question is whether all jobs can be feasibly scheduled (see
[21]).

Chen et al. [16] show that BAP and SAP are NP-hard even in the
very restricted case of sj ¼ 0; f j ¼ 1; vj ¼ rj for all j. Moreover, they
show that SAP is strongly NP-hard even when the request sizes are
bounded. They derive this property from the fact that DSA is
strongly NP-complete [21] and it remains so even when the
required resources rj are either 1 or 2 (see [35]).

Calinescu et al. [11] give a randomized polynomial-time approx-
imation algorithm for RAP with guarantee arbitrarily close to 2.
They also give a simpler, deterministic algorithm with guarantee
3 and a simple rounding algorithm with guarantee 2 for the special
case where each job requires no more than half of the available
resource units.

Darmann et al. [18] prove that RAP remains NP-hard evenwhen
all the tasks profits are identical. They also give a polynomial-time
approximation algorithm with guarantee arbitrarily close to 2 for
the special case where no job interval is contained in another job
interval. The strong NP-hardness of general RAP has been proven
by Bonsma et al. [8].

RAP can be seen as a flow problem with side constraints.
Consider the Unsplittable Flow Problem (UFP) (see [4,13]), where
an undirected graph G¼ ðV ; EÞ is given, whose edges eAE have
capacity ce. A set of n pairs ðsj; tjÞ of vertices have a value vj and a
demand rj each. The problem asks for a set of paths connecting
pairs ðsj; tjÞ such that for every edge eAE the total demand of the
paths traversing e does not exceed ce and the total value of the
selected paths (vertex pairs) is maximized. When the graph is a
simple path then we have an UFP on a line graph, whereas when

E. Angelelli et al. / Computers & Operations Research 51 (2014) 268–281 269



Download English Version:

https://daneshyari.com/en/article/475551

Download Persian Version:

https://daneshyari.com/article/475551

Daneshyari.com

https://daneshyari.com/en/article/475551
https://daneshyari.com/article/475551
https://daneshyari.com

