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a b s t r a c t

Given an undirected graph G¼(V,E), the Graph Coloring Problem (GCP) consists in assigning a color to each
vertex of the graph G in such a way that any two adjacent vertices are assigned different colors, and the
number of different colors used is minimized. State-of-the-art algorithms generally deal with the explicit
constraints in GCP: any two adjacent vertices should be assigned different colors, but do not specially deal with
the implicit constraints between non-adjacent vertices implied by the explicit constraints. In this paper, we
propose an exact algorithm with learning for GCP which exploits the implicit constraints using propositional
logic. Our algorithm is compared with several exact algorithms among the best in the literature. The experi-
mental results show that our algorithm outperforms other algorithms on many instances. Specifically, our
algorithm allows to close the open DIMACS instance 4-Fullins_5.

& 2014 Published by Elsevier Ltd.

1. Introduction

Given an undirected graph G¼(V, E), where V is a set of vertices and E a set of unordered pairs of vertices called edges
fðvi; vjÞjviAV ; vjAVg, the Graph Coloring Problem (GCP) consists in assigning a color to each vertex of the graph G in such a way that
any two adjacent vertices are assigned different colors, and the number of different colors used is minimized. The minimum number of
colors needed to color G is called the chromatic number of G, denoted by χ(G). Deciding whether a graph can be colored using at most k
colors is referred as k-colorability problem, which is the decision version of GCP.

GCP is one of the most studied NP-hard combinatorial optimization problems. It is interesting not only for studying the computational
complexity but also for practical applications. Many real world problems can be naturally encoded into GCP and solved using a GCP
algorithm. Examples of such problems include scheduling [1,2], timetable [3,4], register allocation [5], frequency assignment [6], and
communication networks [7].

Algorithms for GCP generally fall into two categories: exact algorithms (see e.g., [8–12]) and approximate algorithms. Approximate
algorithms include construction method [13], local search [14], evolutionary algorithms based on populations [15,16], hybrid algorithms [17],
and other heuristic methods [18]. Because of its hardness, most algorithms for GCP in the literature are approximate and few are exact.
Indeed, a GCP encoding a real application problem is often very large and can be out of the reach of exact algorithms, because exact coloring
algorithms generally need to enumerate the search space of a problem and have difficulties to solve large instances. However, approximate
algorithms are usually unable to prove the optimality of their solutions. Especially, they are usually unable to prove the unfeasibility of a
k-colorability problem. So exact algorithms remain very useful and indispensable. In this paper, we focus on exact algorithms for GCP.

The constraints in a GCP are very easy to express and understand, saying that any two adjacent vertices cannot be assigned the same color.
However, these simple explicit constraints between adjacent vertices imply many complex constraints among non-adjacent vertices. It appears
that most state-of-the-art GCP algorithms do not specially detect and exploit these implicit constraints. One way to discover and exploit the
implicit constraints is to encode a GCP using k colors into the Boolean satisfiability problem (SAT) by expressing the explicit constraints in CNF
(Conjunctive Normal Form) clauses. Then modern SAT algorithms discover and exploit the implicit constraints among non-adjacent vertices using
Conflict Driven Clause Learning (CDCL). However, the SAT instance encoding the GCP generally is very large, limiting the size of the GCP that can be
solved in this way.
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In this paper, we propose a new exact algorithm for GCP based on a backtracking schema. The explicit constraints of a GCP are not
encoded into SAT. At the beginning, every vertex has the set of k available colors. Vertices are assigned a color from their sets of available
colors one by one. When a color c is assigned to a vertex v, c is removed from the set of available colors of all vertices adjacent to v. Each
time a dead-end is encountered, i.e., when the set of available colors of a vertex becomes empty, the Conflict Driven Clause Learning
(CDCL) schema in modern SAT solvers is adapted to discover an implicit constraint among vertices. This implicit constraint is used in
subsequent search to reduce the search space.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the motivation of our approach. Section 4
presents the new backtracking algorithm and discusses in detail the clause learning schema in our algorithm adapted from modern SAT
solvers. Section 5 empirically studies the clause management strategies and the distribution and impact of the learnt clauses in the real
coloring process, and shows the effectiveness of CDCL by comparing our algorithms (with and without clause learning) with other
algorithms on standard GCP benchmarks. Section 6 concludes the paper.

2. Related work

GCP can be expressed using integer programming and then solved using a software such as CPLEX. For each vertex v and each color c,
let vc be a binary variable that evaluates to 1 if and only if (iff) v is assigned color c. The decision version of GCP, i.e., the k-colorability
problem, can be naturally expressed using nnk binary variables as follows:

∑
c
vc ¼ 1; 8 vAV ð1Þ

ucþvcr1; 8 ðu; vÞAE and 8 c ð2Þ
Eq. (1) says that each vertex is assigned exactly one color, and Eq. (2) says that two adjacent vertices cannot be assigned the same color.

In order to minimize the number of colors, one can consider n colors and use n additional binary variables yc ð1rcrnÞ that evaluate to
1 iff color c is used. The integer programming problem becomes

min∑
c
yc

subject to Eq. (1) and

ucþvcryc; 8 ðu; vÞAE and 8 c ð3Þ
The number of binary variables in the above integer programming formulations of GCP is in Oðn2Þ. Mehrotra and Trick proposed a

formulation using up to an exponential number of variables in [19]. Let S be the set of all independent sets of G, a binary variable xs is
associated to each independent set s that evaluates to 1 iff all vertices in s are assigned the same color. The corresponding integer
programming formulation of GCP becomes

min∑
sA S

xs

subject to

∑
vA s;sAS

xsZ1; 8 vAV ð4Þ

An alternative solving approach of GCP is to enumerate all possible vertex colorings of G following a branch-and-bound schema. Let G
be a graph of n vertices such that each vertex v is associated with a set Cv¼{1, 2, …, n} of n available colors, G\v be G after removing the
vertex v and all incident edges of v, and let function max(a, b) denote the largest value between a and b. Algorithm 1 returns the chromatic
number χ(G) after enumerating all possible colorings of G in a backtracking tree.

Algorithm 1. backGCP(G, k, UB), a backtracking algorithm for GCP.

Input: A graph G¼(V, E), the largest color k used so far in the current partial coloring solution, and the smallest number UB of colors
used in a complete coloring solution of G so far

Output: the chromatic number χ(G) of G
begin
if jV j ¼ 0 then
return k;

�
if there is a vertex v such that Cv does not contain any color less than UB then
return UB;

�
select a vertex v from G; =n branching n=

for each color c in Cv such that coUB do
remove c from Cu of each vertex u adjacent to v;
UB¼ backGCPðG\v;maxðk; cÞ;UBÞ;
insert c toCu of each vertex u adjacent to v;

66664
return UB

������������������������
end

Algorithm 1 should be called with backGCP(G, 0, nþ1) to search for the chromatic number of G. At the beginning, k¼0, i.e., the largest color
used is 0 (no color is used at the beginning), the smallest number UB of colors used in a complete coloring solution so far is initialized to nþ1, and
all the vertices have the same set of n available colors. The algorithm selects a vertex v, and for each available color c of v smaller than UB, assigns c
to v, i.e., removes c from the adjacent vertices of v, and recursively calls the algorithm to color the remaining vertices of G. If G does not contain any
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