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a b s t r a c t

Several very effective exact algorithms have been developed for vehicle routing problems with time
windows. Unfortunately, most of these algorithms cannot be applied to instances that are defined on
road networks, because they implicitly assume that the cheapest path between two customers is equal
to the quickest path. Garaix and co-authors proposed to tackle this issue by first storing alternative paths
in an auxiliary multi-graph, and then using that multi-graph within a branch-and-price algorithm. We
show that, if one works with the original road network rather than the multi-graph, then one can solve
the pricing subproblem more quickly, in both theory and practice.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle Routing Problems (VRPs) are a much-studied class of
combinatorial optimization problems, and several books have
been written about them (e.g., [3,24,25,39]). Many VRPs arising
in practical applications involve restrictions on the time at which
service begins at the customers. Well-known examples include the
Traveling Salesman Problem with Time Windows or TSPTW [4],
the Multiple Traveling Salesman Problem with Time Windows or
m-TSPTW [14,37], and the Vehicle Routing Problem with Time
Windows or VRPTW [15,38]. Good surveys on such problems
include [10,17].

As mentioned in the above-mentioned books and surveys,
there are several effective exact algorithms available to solve such
time-constrained VRPs, some of which are capable of routinely
solving instances with up to around 100 customers to proven
optimality. There are also several effective heuristics that are able
to provide good solutions for even larger instances.

Unfortunately, and surprisingly, most of these algorithms are
based on a key assumption that is not guaranteed to hold in the
real world. This assumption is that, for all ordered pairs (i, j) of
nodes (that represent either depots or customers), one is provided
with two numbers: cij, the cost of traveling from i to j, and tij, the
time taken to travel from i to j. In reality, however, many VRPs are
concerned with the routing of vehicles on road networks. In a real-

life road network, the cheapest path between two points is
unlikely to be the same as the quickest path. Therefore, to model
and solve time-constrained VRPs on road networks correctly, one
should take into account the trade-off between travel costs and
travel times.

This issue was explained in detail in a recent paper by Garaix
et al. [23], who proposed to remedy the situation as follows.
First, in a pre-processing stage, they solve a series of bicriteria
shortest path problems in the road network. This yields, for each
pair of customer and/or depot nodes in the road network, a set of
paths that completely represent the cost-time trade-off. These
paths are stored in an auxiliary multi-graph. Then, they use a
traditional branch-and-price algorithm, but solve the pricing sub-
problem on the multi-graph rather than the original road network.
Finally, dynamic programming is used to convert the optimal
solution into a collection of feasible routes in the road network.

Although the approach of Garaix et al. [23] is elegant, it does
require the use of specialised techniques for constructing the
multi-graph, solving the pricing problem, and converting the
solution. Moreover, as we explain in Section 3, constructing and
storing the multi-graph can take exponential time and space in the
worst case. These considerations led us to develop more ‘natural’
algorithms for the pricing subproblem that work directly on the
original road network. It turns out that these natural algorithms,
as well as being simpler, are faster in both theory and practice.

The paper is organized as follows. In Section 2, we review the
relevant literature. In Section 3, we present a result about the size
of the multi-graph. In Section 4, we present our first pricing
routine, which is designed for the case of ‘elementary’ routes. We
also show that we obtain, as a by-product, an exact algorithm for
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the ‘road network’ version of the TSPTW. In Section 5, we present
our second pricing routine, for the case in which ‘non-elementary’
routes are permitted, and show that it is faster (in the worst case)
than the one of Garaix et al. [23]. In Section 6, we show that it is
faster also in practical computations. Finally, some concluding
remarks appear in Section 7.

2. Literature review

We now review the relevant literature. Section 2.1 deals with
the TSPTW,m-TSPTW and VRPTW, Section 2.2 covers VRPs on road
networks, and Section 2.3 focuses on VRPs with time windows on
road networks.

2.1. Standard VRPs with time windows

The TSPTW is defined as follows [4]. Let G be a complete
directed graph with vertex set V ¼ f0;1;…;ng and arc set A. Vertex
0 represents the depot and the other vertices represent customers.
For each ði; jÞAA we are given a cost cij and a traversing time tij. Each
customer i has a time window ½ei;ℓi� and a service time si. Service at
customer i must start no earlier than ei and no later than ℓi. If the
vehicle arrives at customer i before ei, it has to wait. The vehicle
departs from the depot at time 0 and must return to the depot by
time T. The objective is to find a minimum cost route that services
each customer once and satisfies the time window requirements. It
is usually assumed that all costs and times are positive integers.

The m-TSPTW is identical to the TSPTW, except that there are
several vehicles and each customer must be visited by exactly one
vehicle [14,37]. The VRPTW is similar, except that each customer i
has a positive integral demand qi and the total load of each vehicle
must not exceed some positive integral capacity Q [15,16].

Exact approaches to the TSPTW include, e.g., dynamic pro-
gramming (DP) [20], hybrid DP/branch-and-bound [6], constraint
programming [35] and branch-and-cut [2,12]. Exact approaches to
the multi-vehicle problems include, e.g., Lagrangian relaxation
[29], branch-and-cut [33], branch-and-price [8,14,16,21], branch-
cut-and-price [13,28,30] and, very recently, hybrid DP/dual ascent/
branch-and-bound [5].

All of the exact approaches to the multi-vehicle problems are
based, either explicitly or implicitly, on set covering or set parti-
tioning formulations. The set covering formulation takes the form

min ∑
rAΩ

crλr ð1Þ

s:t: ∑
rAΩ

airλrZ1 ð8 iAV\f0gÞ ð2Þ

λrAf0;1g ð8rAΩÞ; ð3Þ
where Ω denotes the set of all feasible routes for a single vehicle,
cr denotes the cost of route r, λr is a binary variable taking the
value 1 if and only if a vehicle uses route r, and air is a binary
constant, taking the value 1 if and only if customer i is serviced by
route r. The set partitioning formulation is identical, except that
the inequalities (2) are changed to equations. (If the costs and
times obey the triangle inequality, which is usually the case in
practice, this change affects neither the optimal solution nor the
lower bound from the LP relaxation.)

Since jΩj can be exponentially large, if one wishes to solve the
LP relaxation of (1)–(3) exactly, it must be solved via column
generation, i.e, the variant of the simplex method in which
columns of negative reduced cost are generated on-the-fly via
pricing routines. The pricing subproblem is strongly NP�hard
[18], but can be solved in pseudo-polynomial time if one permits
non-elementary routes, i.e., routes that visit customers more than

once [14,16]. The resulting enlargement of the column set Ω does
not change the validity of the set covering/partitioning formula-
tions, but it weakens the lower bound obtained when one solves
the LP relaxation. As a compromise, one can forbid some non-
elementary routes but not others (e.g., [5,13,27]).

2.2. Routing on road networks

All of the approaches mentioned in the previous subsection
assume that the instance is defined on a complete directed graph.
Most VRPs arising in practice, however, take place on road networks.
It is usually possible to transform a VRP on a road network into a VRP
on a complete graph, via a series of shortest-path computations (e.g.,
[1,11,22]). Nevertheless, it can be preferable to work with the original
road network, in an attempt to exploit any properties, such as
sparsity or planarity, that it may have (e.g., [11,22,31,32]).

Much of the literature on VRPs on road networks has been
concerned with so-called arc routing problems, in which the
customers are located along the edges or arcs of the network,
rather than at nodes. For brevity, we do not review the arc routing
literature here, and refer the reader to the book [19]. We mention
however that the paper [32], concerned with the so-called
Capacitated Arc Routing Problem (CARP), can be viewed as a
companion paper to the present one. It shows that pricing for
the CARP can be performed more quickly if one works on the
original road network rather than on a complete graph. The
pricing routines presented in [32] are however quite different
from the ones presented here. In particular, the routine for
elementary routes in [32] is based on integer programming,
whereas the one we present in Section 4 is based on dynamic
programming. Moreover, the routine for non-elementary routes in
[32] is slower and more complex than the one we present in
Section 5, due to the fact that, in the case of the CARP, the vehicle
load does not change when an edge is deadheaded.

We now return to node routing. The following ‘road network’
version of the TSP was defined in [11,22,34]. We are given

� an undirected road network ~G ¼ ð ~V ; ~EÞ,
� a specified depot node, say node 0,
� a set of customer nodes C � ~V \f0g,
� a cost ~ce for each eAE.

The task is to find a minimum-cost tour, starting and ending at the
depot, that passes through each customer node at least once.
Nodes may be visited more than once, and edges may be traversed
more than once, if desired. (Note that nodes in ~V \ðC [ f0gÞ
represent road junctions.)

Following [11,31], we call the above variant of the TSP the Steiner
TSP. In [9,22], the Steiner TSP is formulated as an integer programwith
Oðj ~E jÞ variables and an exponential number of constraints, and solved
with cutting planes and branch-and-bound. In [31], it is formulated as
an integer program with only Oðj ~EjÞ variables and constraints, and
solved via plain branch-and-bound.

Several generalisations of the Steiner TSP were also presented
in [31]. Of relevance to us is the Steiner version of the TSPTW.
This is like the Steiner TSP, but each customer iAC now has a time
window ½ei;ℓi� and a service time si, and the vehicle must leave the
depot at time 0 and return by time T. One can easily define Steiner
versions of the m-TSPTW and VRPTW in a similar way. (In [31],
the graph ~G was assumed to be undirected, but one can also allow
it to be directed, or mixed.)

2.3. Routing on road networks with time windows

Unfortunately, VRPs on road networks become significantly
harder to model and solve when time windows are present. Indeed,
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