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a b s t r a c t

We develop in this paper a high performance test problem generator for generating analytic and highly
multimodal test problems for benchmarking unconstrained global optimization algorithms. More
specifically, we propose in this research a novel and computationally efficient procedure for generating
nonlinear nonconvex not separable unconstrained test problems with (i) analytic test functions, (ii)
known local minimizers that are distributed uniformly in the interior of a compact box, among which
only one is the global solution, and (iii) controllable difficulty levels. A standard set of test problems with
different sizes and different difficulty levels is produced for both MATLAB and GAMS and is available for
downloading. Numerical experiments have demonstrated the stability of the generating process and the
difficulty of solving the standard test problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization, as a powerful search engine in decision-making,
finds wide applications in almost all fields of engineering, finance,
and management as well as social science. The existence of
multiple local minima of a general nonconvex objective function
makes global optimization a great challenge. Since the publication
of the two-volume books entitled “Towards Global Optimization”
in 1975 [9] and 1978 [10], the study of global optimization has
grown by leaps and bounds. The last four decades have witnessed
rapid development in both theory and numerical techniques for
global optimization. Nevertheless, it is difficult to compare the
efficiencies of different solution algorithms directly. Thus, empiri-
cal computational testing is always necessary.

Construction of test problems for benchmarking global optimi-
zation algorithms is a challenging task. There are three main types
of test problems in the literature: problems modeling a variety of
real-world applications, problem instances with certain desig-
nated characteristics, and randomly generated test problems with
known solutions. Excellent collections of test problems of the first
two types can be found in [12,13,20,29,33], for example. For the
third type, some test problem generators have been proposed for
constrained global optimization (see, e.g., [5,11,27,31,32]. How-
ever, the generation of nontrivial test problems for unconstrained
global optimization algorithms seems to be difficult as evidenced
by the fact that very few papers have addressed this subject.

Unconstrained global optimization is an important subject
within the optimization community. It not only forms the founda-
tion of global optimization, but also has many applications in the
real world. Various practical problems can be modeled by or be
transformed into unconstrained global optimization problems.
Examples include seismic analysis in earthquake and exploration
seismologies; protein folding problems in biomedical sciences;
solution to polynomial equations that arise frequently in symbolic
computation, algebraic geometry and computer algebra; and
satisfiability problems that arise frequently in computer vision,
VLSI design and computer-aided design. Numerous papers in the
literature have been devoted to the development of theories and/
or algorithms for unconstrained global optimization, including
tunneling algorithms (see, e.g., [3,6,24]), filled function methods
(see, e.g., [17,18,39]), multistart algorithms (see, e.g., [2,21,28]),
simulated annealing algorithms (see, e.g., [7,19]), DIRECT algo-
rithm (see, e.g., [14,22]), methods using Peano curves (see, e.g.,
[35,36]), and global descent method (see [30]). Benchmarking
unconstrained global optimization algorithms is thus an important
and interesting subject both from the theoretical and practical
points of view.

In 1993, Schoen [34] proposed, probably, the first test problem
generator for benchmarking unconstrained global optimization
algorithms. Denote the usual Euclidean norm of a vector by J � J .
Suppose that k distinct points, ziAð0;1Þn, i¼ 1;…; k, and their
values, f iAR, i¼ 1;…; k, are given. Assume further that k para-
meters, ai41, i¼ 1;…; k, are also given. Schoen's generator gen-
erates the following family of functions:

f ðxÞ ¼∑k
i ¼ 1f i∏ja i‖x�zj‖aj

∑k
i ¼ 1∏ja i‖x�zj‖aj

where xA ½0;1�n:
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It can be proved that the k points, zi, i¼ 1;…; k, are stationary
points, and mini f ir f ðxÞr maxi f i, 8xA ½0;1�n. Moreover, if
aiZ2AZ, 8 iAf1;…; kg, then f AC1. Note, however, that there is
no prior knowledge or ways to control the properties of the
stationary points, in general.

In 1998, Gaviano and Lera [16] introduced a family of functions
that included a class of C1 and a class of C2 test functions with a
priori known local minimizers and their regions of attraction (also
known as basins) (see, e.g., [8,17] for the definition of the region of
attraction of a minimizer). They, with other coworkers, further
extended the family to include a class of C0 test functions in [15] in
2003. The idea of their method is to dig some deep holes in the
hillside of a convex quadratic function. The width of a hole is
actually the region of attraction of its minimum. For the class of C0

test functions, they used quadratic polynomials to maintain the
continuity of the resulting class of composite functions. For the
class of C1 test functions, they used cubic polynomials to maintain
the first-order continuous differentiability. While for the class of
C2 test functions, they used quintic polynomials to maintain both
the first- and second-order continuous differentiabilities. Denote
the box-constrained admissible region of x by X. Suppose that k
distinct points, ziA intðXÞ, i¼ 1;…; k, and their values, f iAR,
i¼ 1;…; k, are given. Let Si ¼ fxARn : Jx�zi Jrρi; ρi40g,
i¼ 2;…; k, where ρi, i¼ 2;…; k, are chosen such that Si \ Sj ¼∅,
8 ia j. Their generator produces the following family of functions:

f ðxÞ ¼
giðxÞ; xASi ðiAf2;…; kgÞ;
‖x�z1‖2þ f 1; x=2S2 [ ⋯ [ Sk;

(

where gi, i¼ 2;…; k, are suitable quadratic, cubic or quintic poly-
nomials for C0, C1 or C2-class test functions, respectively. Interested
readers can find the details of these polynomials in [15]. As
mentioned in their papers, all three classes have many parameters
to be coordinated. The correlations of the parameters indeed do
not allow simple and fast generation. The parameter coordination
problem was finally relaxed by their test problem generator
presented in [15]. Since they provided a complete mechanism
for tuning the parameters, from our point of view, their generator
is so far the most controllable one that is capable of generating
numerous test problems. Nevertheless, their generator has two
obvious weaknesses. First, the region of attraction of z1 is not well
defined since the hillside of the convex quadratic function,
‖x�z1‖2þ f 1, has been destroyed by the holes S2;…; Sk. Moreover,
it is well known within the global optimization community that
just the value, and the first- and second-order derivatives of a
function, in general, do not provide sufficient information for
finding a global minimizer of the function. Since the functions in
Gaviano et al. are composite functions with at most second-order
continuous differentiability, it can be seen from the definition of f
that no information about the function gi, i¼ 2;…; k, is available at
any x=2S2 [ ⋯ [ Sk. It can thus never provide sufficient informa-
tion for locating the minimizers z2;…; zk. Without doubt, this
property makes their test functions hard to be minimized globally
and thus excellent for competitive testing. However, due to the
same reason, only a few papers in the literature have actually
adopted it for a comparison purpose of global optimization
algorithms. We thus believe that analytic functions are better
choices of test problems for benchmarking global optimization
algorithms.

In 2007, Addis and Locatelli [1] proposed a test problem
generator for generating a class of functions that are analogous
with the molecular conformation problems. They first defined two
types of one-dimensional component with multiple local mini-
mizers obtained through some oscillation terms based on cosine
functions. By addition and linear transformation of several one-
dimensional components with different parameters, they obtained

a class of not separable n-dimensional component, namely basic
component function. Through their combination operations on
two instances of the basic component function, they finally
obtained a basic test function. In fact, by using basic component
functions or the result of previous combination operations as
parameters of their combination operations, more test functions
can be obtained. As their functions contain numerous components
and each component contains several parameters, interested
readers should refer to [1] for more details. Essentially, one of
the two types of one-dimensional component in [1] is

dp;K ðxÞ ¼ ξpðxÞþOK;H
c1 ;c2 ðxÞ

where p, K, c1, c2, and H are parameters, OK;H
c1 ;c2 ðxÞ is an oscillation

term based on a cosine function, and ξpðxÞ is a composite function
with continuous first derivative. Therefore, their generator pro-
duces at most C1 test problems. It is evident that some significant
difficulties still exist to block the generation of analytic functions
for benchmarking unconstrained global optimization algorithms,
notwithstanding the above-mentioned promising progress.

The main purpose of this research is to develop a high
performance test problem generator for generating analytic and
highly multimodal test problems for benchmarking unconstrained
global optimization algorithms. Unlike Schoen's functions in [34],
the proposed test problems have a priori known minimizers, a
maximizer and saddle points as well as their values. Unlike
Gaviano et al.'s functions in [15,16] and Addis and Locatelli's
function in [1], the proposed test problems are analytic
polynomial-type functions; the parameters of the proposed test
problems can be generated directly without any coordination
problem. This paper indeed describes a novel and computationally
efficient procedure for generating nonlinear nonconvex not separ-
able unconstrained test problems with (i) analytic test functions,
(ii) known minimizers that are distributed uniformly in the
interior of a compact box, and (iii) controllable difficulty levels.

This paper is organized as follows. In Section 2, we first construct
n univariate nonlinear nonconvex unconstrained minimization pro-
blems with known optimal solutions. Combining the n univariate
problems, we produce a separable nonlinear nonconvex uncon-
strained n-variable problem. In Section 3, we disguise the separability
of the problem and introduce randomness by adopting a technique
from Calamai et al. [5] to obtain a not separable function by linear
transformations of variables of a separable function. Since many
algorithms for solving unconstrained global minimization problems
require that all local minimizers of the objective function be
contained in the interior of a compact box, we pay special attentions
to this issue in Section 4. We devote Section 5 to discuss the
realization of the generator and the developed software packages,
while generation of random numbers, control of the difficulty levels
of the test problems, description of the software packages, and
summary of the parameters are the topics of this section. In
Section 6, we report the results of the stability tests on the standard
test problems. We also report the results of some test experiments
with a multistart algorithm and with a deterministic global optimi-
zation solver, namely GAMS/BARON. Finally, we draw some conclu-
sions in Section 7.

2. Generation of separable nonlinear nonconvex
unconstrained test problems

2.1. Construction of separable problems

Consider a general class of separable problems for uncon-
strained global minimization which takes the following form:

ðPÞ min
xARn

f ðxÞ;
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