Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/0926860X)

Applied Catalysis A: General

jour nal homepage: www.elsevier.com/locate/apcata

Feature Article

Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: Effects of cerium modification

Yang Liu, Pengyi Zhang[∗]

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o

Article history: Received 3 September 2016 Received in revised form 3 November 2016 Accepted 18 November 2016 Available online 19 November 2016

Keywords: Catalytic decomposition Ozone Todorokite Manganese dioxides Ceria

1. Introduction

Ozone (O_3) is a unique species whose chemistry has a profound impact in many areas of our society. It is well known that $O₃$ layer in the stratosphere prevents short wavelength UV light from reaching the Earth surface $[1]$. However, tropospheric O_3 is a common pollutant detrimental to human health [\[2\].](#page--1-0) Due to its strong oxidizing ability, O_3 is widely used in water [\[3,4\]](#page--1-0) and air [5-12] purification, and the residual O_3 in the stream usually exceeds the allowable concentration. In addition, the chemical interactions between indoor O_3 and organic molecules can produce short-lived products that may be highly irritative with adverse health effects [\[13\].](#page--1-0)

Catalytic decomposition technique has been generally adopted for O_3 removal at low temperatures [\[14\].](#page--1-0) Among various catalysts, MnO_x -based materials are mostly used due to its high activity [\[15\].](#page--1-0) Generally, MnO_x is supported on the carriers with high surface area to improve its activity $[16-18]$. Recently, the effects of crystal structure and morphology of MnO_x on its activity have been inves-tigated. Jia et al. [\[19\]](#page--1-0) reported that among three kinds of $MnO₂$ (α -, β - and γ -) with different tunnel structures, α -MnO $_2$ with tunnel size of 0.46 nm \times 0.46 nm possessed the highest activity. In addition, α -MnO₂ nanofiber exhibited better activity than other two α -MnO₂ samples with nanorod and nanotube morphologies, which

Corresponding author. E-mail address: zpy@tsinghua.edu.cn (P. Zhang).

[http://dx.doi.org/10.1016/j.apcata.2016.11.028](dx.doi.org/10.1016/j.apcata.2016.11.028) 0926-860X/© 2016 Elsevier B.V. All rights reserved.

A B S T R A C T

Catalytic decomposition of gaseous ozone (O_3) over todorokite-type manganese dioxides (T-MnO₂) at room temperature and the effects of cerium modification were investigated. Catalytic activity and stability were greatly improved over Ce-modified $MnO₂$ (Ce-MnO₂), which increased with the increase of Ce/Mn atomic ratios from 0.06 to 0.28. The cerium modification made agglomerated MnO₂ particles transformed into small sheets of Ce-MnO₂ catalyst with Ce/Mn ratio of 0.28, accordingly increasing the specific surface area. Moreover, the crystal boundaries between $MnO₂$ and CeO₂ formed at high ratios of Ce/Mn. Larger surface area and the crystal boundaries between $MnO₂$ and CeO₂ resulted in the formation of more oxygen vacancies, which act as the active sites for $O₃$ decomposition. Besides, we found the improved catalytic stability was associated with the desorption of oxygen species occupying the positions of oxygen vacancies.

© 2016 Elsevier B.V. All rights reserved.

is ascribed to its highest content of oxygen vacancies caused by its exposed (211) facet and largest specific surface area [\[20\].](#page--1-0) Mn-Fe mixed oxide exhibited ∼100% removal efficiency for ∼10,000 ppm of O₃ within 66 h under the space velocity of $12 \mathrm{Lg}^{-1}$ h⁻¹ and relative humidity of 40% at 25° C [\[21\].](#page--1-0)

Todorokite-type $MnO₂$ is consisted of triple chains of edgesharing MnO₆ octahedra with a tunnel size of 0.69 nm \times 0.69 nm [\[22\],](#page--1-0) which widely exists in terrestrial deposits and ocean nodules [\[23\].](#page--1-0) There has been considerable interest in its possible uses as catalysts due to its unique tunnel structure [\[22,24–28\].](#page--1-0) However, to the best of our knowledge, no study has been reported focusing on catalytic decomposition of gaseous O_3 over todorokite-type MnO₂, which, however, is of great significance to scientific research and practical application due to its special structure and abundance in nature. Herein, we report the study on gaseous $O₃$ decomposition over the todorokite-type $MnO₂$ catalyst for the first time, and the effects of cerium modification on the formation of oxygen vacancies and accordingly on the O_3 decomposition performance are also clarified.

2. Experimental

2.1. Catalyst preparation

Todorokite-type $MnO₂$ were obtained by autoclaving layerstructured $MnO₂$ (i.e., birnessite), which was synthesized by reactions of $MnO₄$ and $Mn²⁺$ under strong alkaline conditions

Fig. 1. XRD patterns of the T-MnO₂ and Ce-MnO₂ catalysts.

as reported in literature [\[24\].](#page--1-0) The preparation procedures are as follows.

First, $Mn(OH)$ ₂ sol was obtained by adding 50 mL of 5 M NaOH solution into 40 mL of $0.5 M$ MnCl₂ solution under vigorous stirring. Then 40 mL of $0.2 M$ KMnO₄ solution was added dropwise into the above mixture under vigorous stirring and dark precipitates were formed. The MnO₄⁻/Mn²⁺ mole ratio was set at ∼0.4. This suspension was aged at room temperature for 2 days, then filtered and washed with deionized water for 6 times. In order to fully remove the residual Cl−,the solid was further mixed with 200 mL of deionized water under mild stirring for another 2 days, which was proposed as the "double-aging method" [\[29\].](#page--1-0) The layered phase thus obtained (Na-birnessite) was then filtered and washed with deionized water for 3 times.

Then, wet Na-birnessite sample was transferred into 200 mL of 1 M Mg($CH₃COO$)₂ solution and stirred for 12 h for ion exchange of sodium ion with magnesium ion. After washed with deionized water for 6 times, the ion-exchanged sample was kept in the Teflonlined autoclave at 125 ◦C for 2 days to form tunnel structure. The resultant solid product was filtered, washed with deionized water for 3 times and dried at 105 ◦C in an oven overnight. The obtained powder was grounded, tableted, crushed and sieved to 40–60 mesh, and is denoted as $T-MnO₂$.

For cerium modification, $Ce(NO₃)₃$ 6H₂O and MnCl₂ 4H₂O were added into 40 mL of deionized water from the beginning of the above preparation procedure. The subsequent steps were the same as those of the pure todorokite $MnO₂$. Four nominal Ce/Mn atomic ratios of 0.1, 0.2, 0.3 and 0.4 in the starting mixture were chosen. For convenience, the Ce-modified $MnO₂$ samples were denoted as

Fig. 2. SEM images of the samples: (A) T-MnO₂, (B) Ce-MnO₂(0.06), (C) Ce-MnO₂(0.13), (D) Ce-MnO₂(0.21) and (E) Ce-MnO₂(0.28).

Download English Version:

<https://daneshyari.com/en/article/4755733>

Download Persian Version:

<https://daneshyari.com/article/4755733>

[Daneshyari.com](https://daneshyari.com)