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a b s t r a c t

This paper develops a path-based traffic assignment algorithm for solving the elastic demand traffic
assignment problem (EDTAP). A modified path-based gradient projection (GP) method combined with a
column generation is suggested for solving the equivalent excess-demand reformulation of the problem
in which the elastic demand problem is reformulated as a fixed demand problem through an appropriate
modification of network representation. Numerical results using a set of real transportation networks are
provided to demonstrate the efficiency of the modified GP algorithm for solving the excess-demand
formulation of the EDTAP. In addition, a sensitivity analysis is conducted to examine the effects of the
scaling parameter used in the elastic demand function on the estimated total demand, number of
generated paths, number of used paths, and computational efforts of the modified GP algorithm.

Published by Elsevier Ltd.

1. Introduction

An elastic-demand traffic assignment problem (EDTAP) is one
that establishes the equilibrium between supply functions and
demand functions in a transportation network. In the traffic
assignment problem, the supply functions are determined by the
link travel time characteristics on the network, and the demand
functions are determined by the user benefits derived from travel
[15]. At equilibrium, the link flows, link travel times, path flows,
path travel times, origin–destination (O–D) travel demands, and
O–D travel times are consistent and satisfy the user equilibrium
(UE) conditions [30,28]. That is, the travel times on all used paths
between any O–D pair are equal, and are also equal to or less than
the travel times on any unused paths. In addition, the O–D travel
demands should satisfy the demand functions. Beckmann et al. [3]
provided the first convex programming formulation for the user
equilibrium (UE) traffic assignment problem with endogenously
determined travel demands. Based on this seminal work, many
researchers have considered different formulation approaches and
solution algorithms to enhance the modeling realism and applica-
tions of the UE model with elastic demand. In terms of formulation
approaches, Aashtiani [1] gave the first nonlinear complementarity
problem (NCP) formulation for modeling the interactions in a multi-
modal network. Dafermos [13] offered a variational inequality (VI)

formulation for the multimodal traffic equilibrium model with elastic
demand, where the link travel costs depend on the entire link
flow vector and the travel demands depend on the entire mode-
specific O–D cost vector. Fisk and Boyce [14] provided alternative
VI formulations for the network equilibrium travel choice pro-
blem, which does not required invertibility of the travel demand
function. Cantarella [7] provided a fixed point (FP) formulation for
the multi-mode multi-user equilibrium assignment with elastic
demand, where users have different behavioral characteristics as
well as different choice sets.

As for solution algorithms, the convex combinations method
(or the Frank–Wolfe algorithm) used for solving the UE traffic
assignment problem with fixed demand is perhaps the most
commonly used approach as it can be readily adapted to solve
the elastic demand version with minor additional computational
effort needed to compare the current shortest path cost with the
current value of the inverse demand function [28]. Gartner [17,18]
summarized three approaches for modeling the generalized traffic
equilibrium problem as an equivalent network in which the elastic
demand functions are represented by appropriate generating
links: (1) minimum-cost circulation, (2) zero-cost overflow, and
(3) excess demand. Fukushima [16] explored the possibility of
solving the EDTAP via its dual problem as a nonsmooth convex
programming formulation, while Nagurney [25] extended the
concept of equilibration operator introduced by Dafermos and
Sparrow [12] for solving the excess demand reformulation of the
EDTAP. Babonneau and Vial [2] proposed a variant of the analytic
center cutting plane method for solving the EDTAP with emphasis on
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large-scale instances and high accuracy. Aashtiani [1] developed one
of the early path-based linearization algorithms for solving the
multimodal traffic assignment problem formulated as a NCP.
Cantarella [7] developed two convergent algorithms based on
flow and cost averaging for solving the FP formulation. For a
review of the traffic assignment algorithms, readers can refer to
Patriksson [26,27].

The gradient projection (GP) algorithm has been shown as a
successful path-based algorithm for solving the UE traffic assign-
ment problem with fixed demand [22,8]. Under an ingenious
approach that utilizes the special structure of the traffic assign-
ment problem, GP only needs to perform a simple projection on
the nonnegative orthant in each iteration; therefore, the required
computational effort is modest. In addition, GP adopts the diagonal
inverse Hessian approximation as a scaling matrix and uses the
one-at-a-time flow update strategy to equilibrate path flows one
O–D pair at a time. These features make the GP algorithm
computationally more efficient than the disaggregate simplicial
decomposition (DSD) algorithm (see Chen et al. [8]) for a detailed
computational study between these two path-based algorithms).
Thanks to its good algorithmic features, the path-based GP algo-
rithm has been recently adapted to solve the non-additive traffic
equilibrium problem [11] and the C-logit stochastic user equili-
brium problem [31,32]. Both problems are for the fixed demand
case, and have reported promising results. The purpose of this
paper is to adapt the path-based GP algorithm for solving the
EDTAP, and demonstrate that the modified GP algorithm can be as
efficient as the original GP algorithm for solving the UE traffic
assignment problem with fixed demand.

The paper is organized as follows. The EDTAP is briefly
reviewed in Section 2. The path-based GP algorithm, its modifica-
tions for solving the excess demand formulation of EDTAP, and a
simple illustration of the modified GP algorithm are discussed in
Section 3. In Section 4, numerical experiments are conducted to
examine the efficiency and robustness of the modified GP algo-
rithm. Finally, some conclusions are summarized in Section 5.

2. Elastic demand traffic assignment problem

In this section we review the elastic demand traffic assignment
problem (EDTAP) formulated as a convex program and its excess
demand reformulation.

2.1. Convex programming formulation

As aforementioned, the EDTAP was originally proposed by
Beckmann et al. [3]. In this section, we review the convex
programming formulation for the EDTAP formulated in the path-
based domain [28]:

Minimize ZED ¼ ∑
aAA

Z xa ¼ ∑rsA RS∑kA Krs f
rs
k δ

rs
ka

0
taðwÞdw� ∑

rsARS

Z qrs

0
D�1
rs ðwÞ dw

ð1Þ

subject to : ∑
kAKrs

f rsk ¼ qrs; rsARS ð2Þ

f rsk Z0; rsARS; kAKrs ð3Þ

qrsZ0; rsARS ð4Þ
where A is the set of links; RS is the set of O–D pairs; Krs is the set
of routes between O–D pair rs; xa is the flow on link a; taðwÞ is the
travel time on link a; f rsk is the flow on path k between O–D pair rs;
δrska is equal to 1 if link a is on path k between O–D pair rs, and
0 otherwise; qrs is the demand between O–D pair rs; and D�1

rs ðwÞ is

the inverse demand function between O–D pair rs, which is equal
to the minimum travel time of O–D pair rs at equilibrium.

The objective function in Eq. (1) consists of two terms: an UE
term (i.e., the well-known Beckmann transformation) reflecting
the congestion effect and an inverse demand term reflecting the
elasticity of O–D demands in terms of the network level of service
(LOS). Eq. (2) ensures that the path flows add up to the travel
demand between each O–D pair. Non-negativity constraints on the
path flows and O–D flows are imposed in Eqs. (3) and (4) to ensure
meaningful solutions.

2.2. Excess demand formulation

The EDTAP accounts for both trip generation (i.e., travel choice)
and traffic assignment (i.e., route choice) simultaneously by con-
sidering the equilibration between supply and demand. At equili-
brium, the travel demand determined by the elastic demand
function is consistent with the network level of service via the
minimum O–D travel time for all O–D pairs. Thus, the EDTAP may
be viewed as a simple combined travel demand model that
considers trip generation, trip distribution, and trip assignment
[26]. As suggested by Gartner [17,18], the EDTAP can be reformu-
lated as a fixed demand problem using an equivalent network in
which the elastic demand functions are represented by appro-
priate generating links: (1) minimum-cost circulation, (2) zero-
cost overflow, and (3) excess demand (see Sheffi [28] for details of
these three approaches). In this study, we adopt the excess
demand formulation. From Eq. (1), the second term
∑rsARS

R qrs
0 D�1

rs ðwÞ dw can be express as

∑
rsARS

Z qrs

0
D�1
rs ðwÞ dw¼ ∑

rsARS

Z qrs

0
D�1
rs ðwÞ dw� ∑

rsARS

Z qrs

qrs

D�1
rs ðwÞ dw;

ð5Þ
where qrs is the upper bound demand between O–D pair rs.

The first term ð∑rsARS
R qrs
0 D�1

rs ðwÞ dwÞ on the right-hand-side of
Eq. (5) is a constant; thus, it can be dropped from the objective
function since it would not affect the optimization problem.
The second term ð�∑rsARS

R qrs
qrs

D�1
rs ðwÞ dwÞ represents the excess

demand. With the excess demand variable (ers ¼ qrs�qrs), the
second term can be re-defined as follows:

� ∑
rsARS

Z qrs

qrs

D�1
rs ðwÞ dw¼ � ∑

rsARS

Z
qrs �qrs

D�1
rs ðqrs�vÞð�dvÞ ¼ � ∑

rsARS

Z ers

0
WrsðvÞ dv;

ð6Þ
where ers is the excess demand variable between O–D pair rs, and
Wrs( � ) is the excess demand function between O–D pair rs. Fig. 1
provides a graphical illustration of the change of variable from the
original demand (qrs) to excess demand (ers) and the correspond-
ing elastic demand function (Drs( � )) and excess demand function
(Wrs( � )).

Using the excess demand variable, the EDTAP formulation
given in Eqs. (1)–(4) can be reformulated as follows:

Minimize ZED ¼ ∑
aAA

Z xa ¼ ∑rsA RS∑kA Krs f
rs
k δ

rs
ka

0
taðwÞ dwþ ∑

rsARS

Z ers

0
WrsðvÞ dv

ð7Þ

subject to : ∑
kAKrs

f rsk þers ¼ qrs; rsARS ð8Þ

f rsk Z0; rsARS; kAKrs ð9Þ

ersZ0; rsARS ð10Þ
where ers is the excess demand variable between O–D pair rs,
Wrs( � ) is the excess demand function between O–D pair rs, and qrs
is the upper bound demand between O–D pair rs.
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