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We consider the problem of scheduling a set of jobs on a single machine against a common and
restrictive due date. In particular, we are interested in the problem of minimizing the weighted sum of

?ﬁﬁﬂﬂig maximum earliness and maximum tardiness costs. This kind of objective function is related to the just-
Earliness in-time environment where penalties, such as storage cost and additional charges for late delivery,
Tardiness should be avoided. First we present a mixed integer linear model for the problem without availability
Main(;enance constraints and we prove that this model can be reduced to a polynomial-time model. Secondly,
Due date

we suppose that the machine undergoes a periodic preventive maintenance. We present then a second
mixed integer linear model to solve the problem to optimality. Although the latter problem can be solved
to optimality for small instances, we show that the problem reduces to the one-dimensional bin packing

problem. Computational results show that the proposed algorithm best fit decreasing performs well.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sequencing and scheduling decisions are crucial in manufactur-
ing industries especially in a just-in-time environment (JIT).
Indeed, companies have to meet delivery dates that have been
committed to customers and subsequently they have to mediate
between two conflicting objectives, namely early delivery and late
delivery. Just-in-time manufacturing is a process that continuously
stresses waste reduction by optimizing the processes and proce-
dures necessary to maintain a manufacturing operation. The
importance of the JIT approach has led to a wide range investiga-
tion of scheduling problems that include both earliness and
tardiness penalties [1]. In contrast to earlier studies, most recent
studies integrate tardiness penalties as well as earliness penalties.
Thus, they take into consideration penalties due to delivery after
a contractually arranged due date and those due to storage costs,
insurance, theft, perishing, and bounded capital. The simplest
earliness-tardiness problem involves minimizing the absolute or
squared deviations of job completion times from a common due
date [2-4]. Given that manufacturing systems constitute the vast
majority of company's investment and constitute their production
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tools, they must be in perfect conditions whenever needed.
Especially in a just-in-time environment where customer require-
ments in terms of quality, quantity, and delay are crucial for
competitiveness. Unfortunately, these systems are subject to ran-
dom failures and to deterioration and therefore have to undergo
corrective maintenance. Systems can also be stopped for preven-
tive maintenance reasons. However taking into account mainte-
nance constraints in scheduling problems is not systematic. Many
authors assume that the production system is available whenever
needed. Obviously this is not the case all the time as there are
many reasons why machines may not be in operation. Some of
these reasons are based on a deterministic process, others on a
random process [1]. When unavailability periods are considered,
there are few researchers that explicitly try to integrate preventive
maintenance and scheduling decisions on a single machine. For
instance the authors of [5] consider the problem of minimizing
weighted completion time and they take into consideration only
one preventive maintenance period. Ji et al. [6] consider the same
problem with the objective of minimizing the makespan. Wang
et al. [7] consider the problem of minimizing the total weighted
job completion times on a single machine with availability con-
straints. They show that the problem is NP-hard in the strong
sense. However, they propose heuristics for the special case when
the weights are proportional and when there is only a single
availability constraint. Kacem et al. [8] consider the same objective
with one unavailability period. They propose branch and bound
algorithm and a dynamic programming to solve exactly such
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a problem. They carried out extensive computational experiments
using these approaches, and showed that problems with up to
3000 jobs, can be solved within a reasonable computation time.
Later, Kacem and Chu [9] have improved these results by propos-
ing a branch-and-bound algorithm based on a set of improved
lower bounds and three heuristics. Recently, Low et al. [10] have
addressed the same problem to minimize the makespan where
the unavailability of machine results from periodic maintenance
activities. Each maintenance period is scheduled after a periodic
time interval and the machine should stop to maintain after a
periodic time interval or to change tools after a fixed amount of
jobs processed simultaneously. They show that this problem is
NP-hard in the strong sense and give some heuristic algorithms to
solve it. Computational results provided by the authors show that
the algorithm first fit decreasing performs well. An excellent
survey on scheduling with deterministic machine availability
constraints can be found in the paper of Ma et al. [11]. In this
survey, authors present recent main complexity results concerning
the joint scheduling of production with unavailability periods in
single machine, parallel machine, flow shop, open shop and job
shop environment.

In this paper we consider the problem of minimizing the
weighted sum of maximum earliness and maximum tardiness
costs on a single machine under maintenance constraints. As far as
we know, this kind of objective function was only studied under
the condition of equal unitary weights and without any considera-
tion of maintenance constraints. Amin-Nayeri and Moslehi, as
cited in [12], propose a branch-and-bound method to solve a
single machine sequencing problem, in which the objective func-
tion is to minimize the maximum earliness and tardiness.
Tavakkoli-Moghaddam et al. [13] consider the same objective
function with general due dates. They use an idle insert algorithm
and illustrate its efficiency by solving problems with different
job sizes. They report also the optimal value associated with the
special case of a common due date. In a subsequent paper
Tavakkoli-Moghaddam et al. [14] present two methods to solve
the above problem. Based on several experimental results, they
show that the proposed simulated annealing metaheuristic has a
small error and a lower computational time than the branch-
and-bound method. Recently, Moslehi et al. [15] consider the
minimization of the sum of maximum earliness and maximum
tardiness in a flow shop configuration. They present optimal
scheduling in a two-machine flow shop (n/2/P/ETqx) and deter-
mine dominant set for any optimal solution. They use a branch-
and-bound method to solve the problem and introduce a number
of lemmas to develop an effective algorithm which solve to
optimality more than 82% of a selection of problems.

The remaining of the paper is organized as follows: notations
and problem description are given in Section 2. In Sections 3 and 4
we will present respectively the problem without availability
constraints and the problem with availability constraints. It is in
this case the maintenance constraints. The proposed mathematical
models in these sections and the properties of the two problems
will be discussed extensively. Numerical results are discussed in
Section 5. In the final section, conclusions and perspectives are
presented.

2. Problem description

We consider the following single machine scheduling problem:
n independent jobs are simultaneously available for processing at
time zero, and their processing times p; for ie N={1,2,...,n},
are known and fixed in advance. All jobs have the same restrictive
due date d, with d<Y;.nyp;, and are to be processed non-
preemptively. Furthermore the machine can handle only one job

at any time. A good introduction to common due-date problems
can be found in the paper of Baker and Scudder [16]. We define
furthermore G; as the completion time of jobie Nand P=Y"_ p;.
If C; is smaller than or equal to the common due date d, the job
earliness is E; = d — C;. Accordingly, job i is tardy with the tardiness
T; = C;—d, if its completion time is greater than the common due
date d. As it is not known in advance whether a job i e N will be
completed before or after the due date, earliness and tardiness are
calculated as E; = max{d—C;,0} and T; = max{C;—d, 0}. The max-
imum earliness E,,.x and the maximum tardiness T,,qx are defined
as follows: Epngx = maxX; < n{E;} and Tpqx = max; . y{T;}. The objective
is to jointly minimize the weighted sum of maximum earliness
and maximum tardiness penalties

f:aEmax"‘ﬁTmax (1)

where @, ff, Emax and Tp,qc are respectively the per unit time
earliness penalty, the per unit time tardiness penalty, the max-
imum earliness and the maximum tardiness. This problem will be
denoted as 1|d; = d"|ETnq. Practical interest of the problem was
given in detail by Tavakkoli-Moghaddam et al. [13]. For instance,
the authors cite the case when all jobs done on machines exit
from a firm as batches built-up many parts, and the case of an
assembly line.

First we study the problem without any availability considera-
tion; this problem will be denoted as P1. This problem can
be modeled easily using one of the techniques reported in [17].
Namely models can be based on different decision variables:
(i) completion time variables (ii) time index variables (iii) linear
ordering variables and (iv) assignment and positional date vari-
ables. In the second model, we suppose that the machine avail-
ability is affected by the periodic maintenance activities. In other
words, the machine must stop product processing from time to
time to conduct a preventive maintenance action. This problem
will be denoted by P2.

3. Scheduling without availability constraints
3.1. Mixed integer problem formulation

In this section we propose a mixed integer linear problem
formulation (MIP1) for the Problem P1 based on the completion
time variables. It can be used to obtain optimal solution of the
Problem P1:

min  f = aEmax+ T max

st. G <C—p;+M(1—xy) Vi,jeN, j>i 2)
G <Ci—pi+Mx; VijeN, j>i 3)
Ti—Ei=Ci—d VieN 4)
Ci=>p; VieN (5)
Emax=E; VieN (6)
Tmax>T; VieN 7
Xje{0,1} VijeN, j>i 8)
T,E;>0 VieN. )

In this model, the binary variable x; =1 if the job i is sequenced
before the job j, and 0 otherwise, the parameter M is a sufficiently
large scalar (e.g. an upper bound on the optimal makespan, the
value ;. np; is a valid upper bound). Eq. (1) represents the
objective function to be minimized. Constraints of form (2)
and (3) indicate that no two tasks i and j scheduled on the
same machine cannot overlap in time: if the variable x; =1, the



Download English Version:

https://daneshyari.com/en/article/475603

Download Persian Version:

https://daneshyari.com/article/475603

Daneshyari.com


https://daneshyari.com/en/article/475603
https://daneshyari.com/article/475603
https://daneshyari.com

