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a b s t r a c t

The Minmax Regret Spanning Tree problem is studied in this paper. This is a generalization of the well-
known Minimum Spanning Tree problem, which considers uncertainty in the cost function. Particularly,
it is assumed that the cost parameter associated with each edge is an interval whose lower and upper
limits are known, and the Minmax Regret is the optimization criterion. The Minmax Regret Spanning
Tree problem is an NP-Hard optimization problem for which exact and heuristic approaches have been
proposed. Several exact algorithms are proposed and computationally compared with the most effective
approaches of the literature. It is shown that a proposed branch-and-cut approach outperforms the
previous approaches when considering several classes of instances from the literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The classical (deterministic) Minimum Spanning Tree (MST)
problem is a fundamental problem in combinatorial optimization,
and it can be applied in several areas like logistics or telecommu-
nications. It consists of finding a spanning tree of minimum total
cost in a connected and undirected graph with non-negative edge
costs. Very simple and fast greedy algorithms are able to solve
large MST instances in a few seconds. See [1] for algorithms and
applications of the MST.

The purpose of this paper is to present exact approaches for the
Minmax Regret Spanning Tree (MMR-ST) problem, a generaliza-
tion of the MST, where the problem is to find a feasible solution
that is ϵ-optimal for any possible realization of the vector of the
objective function parameters, with ϵ as small as possible. The
objective function parameters are the costs of the edges of the
graph and each of them is associated with a real cost interval. It is
supposed that there is independence among the different cost
intervals and that the uncertainty is only considered in the cost
function. Problems with this type of data uncertainty are known as
Interval Data Minmax Regret problems; for other types of uncer-
tain data (see [2,6]).

It is known that many MMR combinatorial optimization problems
are NP-Hard even if the corresponding deterministic version is
polynomially solvable; for example, the Shortest Path problem and
the Assignment problem are NP-Hard in their MMR versions (MMR-P

and MMR-A, respectively). Only for few problems, the corresponding
MMR counterpart is polynomially solvable [see [6]]. Several exact and
heuristic approaches have been proposed for different MMR problems
including MMR-ST [22,17,16,19,10,12], MMR-P [9,15,10], MMR-A [20],
MMR Set Covering [21], MMR-TSP [18].

Literature review: It is known that the MMR-ST is also an NP-
Hard problem [5,4]; therefore, the existing exact algorithms are
able to solve only small instances. In [22], a compact formulation is
presented and a set of instances (Ya) comprised by up to 25 nodes
are solved by using CPLEX.

Later on, in [3], a constraint programming algorithm for the
MMR-ST was developed; this method outperformed the one
proposed in [22], allowing to solve to optimality instances of a
new class (He1) with up to 40 nodes. In [17], a branch-and-bound
algorithm was designed and applied to the Ya instances and to
a new group of complete graph instances (Mo). For both classes
of instances, the proposed algorithm outperformed the exact
approach developed in [3].

A Benders Decomposition (BD) algorithm for the MMR-ST was
proposed in [16], and it was used to solve Ya and Mo instances. For
the first group of instances, the BD approach solved all the
instances to optimality, outperforming the results reported by
[22,3,17]. For the second set of instances, the author considered a
parameter p to control the width of the cost intervals; this allowed
to conclude that the performance of the algorithm depended
strongly on the value of p (the larger the p was, the more difficult
the optimization task became).

With respect to the heuristic approaches for the MMR-ST, three
classes of algorithms are found in the literature: (i) the two “one-
scenario” heuristics HM and HU, the first proposed in [11] (where
it is shown that it has an approximation ratio 2) and the second
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proposed in [18]; (ii) a simulated annealing (SA) proposed in [19];
and (iii) a tabu search (KMZ-TS) proposed in [12]. The SA approach
was applied to small instances of the MMR-ST (up to 30 nodes)
and reasonable results were obtained; the author pointed out that
the approach should also work properly for large instances due to
the search scheme used in the algorithm. In [12], the KMZ-TS
algorithmwas extensively tested on different sets of instances (Ya,
He1, Mo and others), and it is shown that its performance is
remarkably better than the one reported for the SA.

Our contribution and paper outline: Different algorithmic stra-
tegies for solving the MMR-ST to optimality are proposed. More
precisely, a BD and a branch-and-cut approach are designed to
solve benchmark instances that extend the size of instances for
which an exact algorithm gets optimal solutions or small gaps.
Additionally, the obtained lower bounds allow us to improve the
knowledge about the quality of the solutions given by the
approach proposed in [12].

In Section 2 basic notation and special results for the MMR-ST
are presented. Section 3 presents two mathematical programming
formulations which will be used later. The proposed algorithms
are described in detail in Section 4. Computational results and
their analysis are presented in Section 5. Conclusions and future
work are presented in Section 6.

2. Minmax Regret Spanning Tree (MMR-ST)

Let G¼ ðV ; EÞ, where jV j ¼ n and jEj ¼m, be an undirected
connected graph with V being the set of nodes and E being the
set of edges. Suppose that for every edge eAE an interval ½c�e ; cþe �
is given (0rc�e rcþe ). The values cþe and c�e will be referred as the
upper and lower limit, respectively, of the corresponding interval.
It is assumed that the cost of edge eAE can take any value on its
corresponding interval, independent of the values taken by the
cost of other edges. Let Γ be defined as Γ ¼ � eAE½c�e ; cþe �, i.e., the
set of all possible realizations of edge costs. Thus, an element sAΓ
is a so-called scenario, because it represents a particular realization
of edge costs; these costs will be denoted by ce

s for each eAE. Let
XAf0;1gjEj be a binary vector such that Xe¼1 if eAE belongs to a
spanning tree of G and Xe¼0 otherwise. For a given scenario s and
a given vector X, the cost of the corresponding spanning tree is
given by FsðXÞ ¼∑eAEðXÞcse, where EðXÞ corresponds to the subset
of edges such that Xe¼1, 8eAEðXÞ and Xe¼0 otherwise. The
classical MST for a fixed scenario sAΓ is

Fn

s ¼minfFsðXÞ∣XAΦg; ðMSTÞ
where Φ is the set of all binary vectors associated with spanning
trees of G.

For a fixed XAΦ and sAΓ, the function Rðs;XÞ ¼ FsðXÞ�Fn

s is
called the regret for X under scenario s. For a given XAΦ, the
worst-case regret or robust deviation is defined as

ZðXÞ ¼maxfRðs;XÞ∣sAΓg: ðMRÞ
The minmax regret version of the MST problem (MMR-ST) is given
by the following:

Zn ¼minfZðXÞ∣XAΦg: ðMMRÞ
In [22], it is shown that an optimal solution for the right-hand-

side of (MR) (the worst-case scenario for a given X) holds the
following property.

Theorem 1 (Yaman et al. [22]). The worst-case scenario for a
solution X, sX , is obtained when the cost of the edges in EðXÞ is set
to the corresponding upper limits and the cost of all other edges to the
corresponding lower limits, i.e., cs

X

e ¼ cþe , 8eAEðXÞ and cs
X

e ¼ c�e ,
8eAE\EðXÞ.

Combining the previous property with (MMR), one can derive
the following formulation for the MMR-ST.

Zn

MMR ¼min ∑
eAEðXÞ

cþe �θ ð1Þ

s:t: θr ∑
eAEðYÞ

c�e þ ∑
eAEðYÞ\EðXÞ

ðcþe �c�e Þ; 8YAΦ ð2Þ

θARZ0 and XAΦ: ð3Þ
Note that this formulation has an exponential number of con-
straints (2) (one per each spanning tree of G).

Let sM be the scenario defined by cs
M

e ¼ 1=2ðc�e þcþe Þ, 8eAE. An
important algorithmic result for a wide class of MMR problems
(including MMR-ST) was provided by [11] using sM, where an
approximation algorithm of ratio 2 was designed; the result reads
as follows:

Lemma 1 (Kasperski and Zieliński [11]). Let XM be a minimum
spanning tree for the midpoint scenario sM. This solution holds
ZðXMÞr2Zn

MMR.

Thus, a solution with an approximation ratio at most 2, XM, is
obtained by simply solving a classical MST problem on Gwith edge
costs defined by sM. In practice, these approximate solutions have
shown a good performance [see, e.g., [18,10]].

The solution obtained for the scenario sþ defined by the upper
limits of the intervals, i.e., cs

þ
e ¼ cþe , has also shown an interesting

performance [see, e.g., [18,10,12]], although it has been proved
that this solution can be arbitrarily bad [see [10]]. Both solutions,
XM and Xþ , will be used as part of the exact approaches proposed
in this work.

3. MIP formulations for the MMR-ST

Notation: Let rAV be an arbitrary node of V which we will
denote as the root node. Let A be the set of arcs of the bi-directed
counterpart of G, GA ¼ ðV ;AÞ, such that A¼ fði; jÞ; ðj; iÞ∣e : fi; jgAEg;
likewise, c�ij ¼ c�ji ¼ c�e and cþij ¼ cþji ¼ cþe 8e : fi; jgAE.

3.1. Formulation#1

This first formulation is based on directed cut-set inequalities.
The Linear Programming relaxation of this type of formulations
usually provides good quality lower bounds, since many facet-
inducing inequalities can be projected out of the directed model
for optimal tree problems [8]. Consequently, instead of looking for
a spanning tree of G we look for a spanning arborescence of GA.

Let xAf0;1gjAj be a binary vector such that xij ¼ 1 if arc ði; jÞAA
belongs to a spanning arborescence of GA and xij ¼ 0 otherwise.
We will use the following notation: a set of nodes SDV (Sa|)
and its complement S ¼ V\S, induce two directed cuts: δþ ðSÞ ¼
fði; jÞ∣iAS; jASg and δ� ðSÞ ¼ fði; jÞ∣iAS; jASg. A vector x is associated
with a directed spanning tree of GA (spanning arborescence)
rooted at r if it satisfies the following set of inequalities:

∑
ði;jÞAδ� ðSÞ

xijZ1; 8SDV \frg Sa| ð4Þ

∑
ði;jÞAδ� ðjÞ

xij ¼ 1; 8 jAV\frg: ð5Þ

Constraints (4), which are exponential in number, are known as
cut-set or connectivity inequalities and they ensure that there is a
directed path from the root r to each node vAV\frg. This type of
constraints is usually used in the context of effective branch-and-
cut procedures (see, e.g., [13]]. Its separation can be performed in
polynomial time using a maximum-flow algorithm on a support
graph with arc-capacities given by the current fractional solution
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