Accepted Manuscript

Title: Doping Strategy to Promote the Charge Separation in BiVO₄ Photoanodes

Authors: Bo Zhang, Haipeng Zhang, Zeyan Wang, Xiaoyang Zhang, Xiaoyan Qin, Ying Dai, Yuanyuan Liu, Peng Wang, Yingjie Li, Baibiao Huang

PII: S0926-3373(17)30294-1

DOI: http://dx.doi.org/doi:10.1016/j.apcatb.2017.03.078

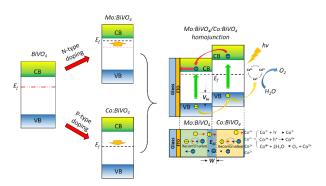
Reference: APCATB 15561

To appear in: Applied Catalysis B: Environmental

Received date: 21-1-2017 Revised date: 25-3-2017 Accepted date: 31-3-2017

Please cite this article as: Bo Zhang, Haipeng Zhang, Zeyan Wang, Xiaoyang Zhang, Xiaoyan Qin, Ying Dai, Yuanyuan Liu, Peng Wang, Yingjie Li, Baibiao Huang, Doping Strategy to Promote the Charge Separation in BiVO4 Photoanodes, Applied Catalysis B, Environmentalhttp://dx.doi.org/10.1016/j.apcatb.2017.03.078

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Doping Strategy to Promote the Charge Separation in BiVO₄ Photoanodes

Bo Zhang^a, Haipeng Zhang^a, Zeyan Wang^{a,*}, Xiaoyang Zhang^a, Xiaoyan Qin^a, Ying Dai^b, Yuanyuan Liu^a, Peng Wang^a, Yingjie Li^c, Baibiao Huang ^{a,*}

- ^a State Key Laboratory of Crystal Materials, Shandong University Jinan 250100, P. R. China
- ^b School of Physics, Shandong University, 250100, P. R. China
- ^c School of Energy and Power Engineering, Shandong University, Jinan, 250061, P. R. China *E-mail:* <u>bbhuang@sdu.edu.cn</u> *E-mail:* <u>wangzeyan@sdu.edu.cn</u>

Graphical abstract

Highlights:

Mo:BiVO₄/Co:BiVO₄ homojunction photoanodes were fabricated

The built in electric field of the homojunction promote the bulk charge separation surface exposed Co²⁺ ions in Co:BiVO₄ improve the interfacial charge separation Co²⁺ doping inside Co:BiVO₄ compensate the intrinsic n-type defects in BiVO₄ varying Co contents dope inside Co:BiVO₄ to facilitate the bulk charge separation

Download English Version:

https://daneshyari.com/en/article/4756082

Download Persian Version:

https://daneshyari.com/article/4756082

Daneshyari.com