Computers & Operations Research 44 (2014) 185-192

Contents lists available at ScienceDirect

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

puter:
& operations
research

Relaxed approximate coloring in exact maximum clique search

Pablo San Segundo *, Cristobal Tapia

@ CrossMark

Centre of Automation and Robotics (UPM-CSIC), C/Jose Gutiérrez Abascal, 2, 28006 Madrid, Spain

ARTICLE INFO ABSTRACT

Available online 13 November 2013

Keywords:

Combinatorial optimization
Approximate coloring
Branch-and-bound

Global search

lighter decision heuristic.

This paper presents selective coloring as a new paradigm for branch-and-bound exact maximum clique
search. Approximate coloring has, in recent, years been at the heart of leading solvers in the field.
Selective coloring proposes to relax coloring up to a certain threshold. The result is a less informed but

Different operators for the remaining uncolored vertices give rise to algorithmic variants integrated in
a new BBMCL framework. BBMCL allows for an interesting comparison between approximate coloring

and degree-based decision heuristics.
The paper also reports extensive empirical tests. Selective coloring algorithms are fastest for a large
subset of the graphs considered.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A complete graph, or clique, is a graph such that all its vertices are
pairwise adjacent. For a given graph, determining whether a hidden
clique of a fixed size k exists is a well known and deeply studied
NP-complete problem referred to as k-clique [1]. The corresponding
optimization problem is the maximum clique problem (MCP) which
looks for the largest possible clique. Besides its theoretical relevance
as an NP-hard problem, MCP is known to have many real applica-
tions in a wide scope of fields as in bioinformatics and computational
biology [2], computer vision [3], robotics [4,5] etc.

1.1. Definitions and notation

A simple undirected graph G = (V,E) consists of a finite set of
vertices V = {vy,v,, -, v} and edges E < VxV which pair distinct
vertices. Two vertices are said to be adjacent (alias neighbors) if they
are connected by an edge. For any vertex v e V, Ng(v) (or simply N(v)
when the graph is clear from the context) refers to the neighbor set of
v in G. Any subset of vertices U = V induces (more precisely vertex-
induces) a new subgraph G’ = G[U] with vertex set U and edge-set
E’ = E such that both endpoints of any edge in E’ are in U.

The paper employs standard notation for valencies in undir-
ected graphs: deg(v) for vertex degree (the cardinality of N(v)) and
A for graph degree (the maximum degree of any of its vertices).
Also standard notation w(G) refers to the order of a maximum
clique in G.

* Corresponding author. Tel.: 4+34 91 7454660, +34 91 3363061;
fax: +34 91 3363010.
E-mail address: pablo.sansegundo@upm.es (P. San Segundo).

0305-0548/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.10.018

Vertex coloring is another well known NP-complete problem very
much related to maximum clique. In its existential formulation, its goal
is to find whether a proper label (color) assignment c(v) : V—N of
range k exists (denoted as k-coloring), such that adjacent vertices all
have different labels (i.e. v, € N(v{) = c(v;) # c(vq)). In the paper,
C(G)={Cq,Cy,---,Cy} refers to any (proper) k-coloring in G. ((G)
partitions V in k disjoint independent color sets C;, one for each color
label (i.e. v e C; < c(v) =1i). |C(G)| denotes the size of the coloring, the
number of different colors used.

Trivial upper bounds for »(G) based on structure are |V(G)| or
A+ 1; but they are not tight. A well known tighter bound is the size
of any proper coloring:

IC(G)] = (G) (1)

since only one vertex from each color class can make part of a
clique. This important property is commonly used in branch-and-
bound MCP algorithms since efficient approximate coloring heur-
istics are known.

We represent vertex colorings in graph drawings using colors.
In particular, green is used to refer to a maximum clique or,
vertices belonging to C; depending on the context; dark blue and
yellow refer to the second and third color labels respectively.
There is no particular criterion for higher color assignments.
Additionally, vertices in graph drawings are all numbered accord-
ing to their initial order in the graph.

1.2. Reference MCP algorithm

Listing 1 describes the outline of REFCLIQUE, an efficient approx-
imate color branch-and-bound MCP solver which corresponds
roughly to Tomita and Seki's MCQ [6]. REFCLIQUE enumerates cliques
in S constructively, starting from a single vertex and enlarging the

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.10.018&domain=pdf
mailto:pablo.sansegundo@upm.es
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://dx.doi.org/10.1016/j.cor.2013.10.018

186 P. San Segundo, C. Tapia / Computers & Operations Research 44 (2014) 185-192

current clique by one at each step of the search. A typical brute force
enumeration picks vertices one at a time from the induced subgraph
G[U] at the current step. This leads to a binomial search tree where,
at level k, all possible different cliques of size k are considered
(steps 1-3, 5-6, 13-15). Once a leaf node is reached, the current
maximal clique in S is stored in S, if it improves the best solution
found so far (step 8); the algorithm then backtracks to the previous
node and continues enumeration.

Listing 1. Reference maximum clique algorithm

Input: A simple graph G = (V,E) sorted using smallest-degree-last
Output: A maximum clique in S,y

REFCLIQUE (U, G, S, Smax)

Initial step: U<« V, c(v;)«< min {i, AG}, S< ¢, Smax < ¢

1. repeat until U=¢
2 select a vertex v e U with maximum color label in C
3 U<U\{v}
4. if (|S|4+c(V) < |Smax|) Teturn //pruning step
5. S<SuU W
6 Uy, < U N Ny(v)
7 if (U, = ¢) then
8 if(S| > |Smax|) then Sy S
/[stores current champion at leaf node
9. return
10. endif
11. REFCOLOR(G[U,], Cy) //colors child subgraph
12. REFCLIQUE (U,, Cy,S, Smax)
13. S-S\ (v}

14. endrepeat

A more efficient strategy is to prune the search when the
current growing clique cannot possibly unseat the current cham-
pion. A lower threshold for improvement at each step can trivially
be established as the difference between the sizes of the best
solution found so far |Sp| and of the current growing clique |S]. If
an upper bound on w(G[U]) is not greater than this threshold
(denoted as kp,;; by Konc and Janeci¢ in [7]) there is no point in
continuing the search along this branch any further and the search
space is pruned (step 4). Modern efficient MCP solvers use
sequential approximate vertex coloring (SEQ) to compute a rea-
sonably tight bound for w(G[U]) based on property (1). REFCOLOR
(step 11) refers to a typical implementation similar to the one
described in [6]. We will come back to this procedure throughout
the paper.

At the beginning of the search, vertices are sorted by degree
and picked by increasing degree, a most-constrained heuristic
known to produce smaller search trees on average. In practice,
smallest-degree-last sorting is used (smallest-last was the actual
name given in Matula and Beck [8] in the context of vertex
coloring; a Java implementation can be found in Listing 7 of [9])
so that candidate vertices are actually selected in reverse order at
the root node. An important implementation detail is to sort child
node vertices U, by increasing color label on output of REFCOLOR;
with this improvement, step 2 of RECLIQUE is reduced to selecting
vertices in reverse order from U, (maximum color first).

1.3. Sequential vertex coloring heuristics
At the heart of REFCOLOR is SEQ, a well known and deeply

studied coloring heuristic; it computes a proper coloring for any
given graph by picking vertices one at a time in strict order and

assigning them the lowest possible color (considering previous
labels). SEQ runs in worst time O(|V|?).

BBMC algorithm [10,11], initially named BB-MaxClique, com-
bines a bit encoding with class coloring, an alternative implementa-
tion of SEQ. In class coloring, each color class is computed in full
before starting with the next label, as opposed to coloring each
vertex sequentially in traditional SEQ. The benefit is that vertices
may be sorted by increasing color on the fly as required by the main
MCP procedure. The disadvantage is that it operates with the full set
of unlabeled vertices at the start of a new (color class) iteration.

This overhead is shown to be reduced by a careful encoding of
vertex sets as bit strings and critical neighbor set computations as
bitmasks; results for BBMC reported best times in literature for a
number of structured and random graphs. A similar conclusion was
reached by Prosser in a recent survey of existing MCP algorithms [9].

1.4. Recent improvements

One important breakthrough described in BBMC and MCS [13]
independently, is to keep the initial sorting of vertices at the root
node fixed throughout the search. It has been shown that SEQ
averages tighter colorings in deeper levels of the tree when input
set U, preserves initial order, as opposed to full color sorting in
MCQ or Konc & Janecic¢'s partial color sorting improvement [7].

Another important recent idea is recoloring, implemented in
MCS. Intuitively, recoloring is a second round coloring which
attempts to reduce the number of colors obtained by SEQ. Thus,
if some conditions are met, a vertex which would be assigned a
label [; by SEQ is now reassigned a label I, <[;. The downside is
the overhead involved in certifying these conditions. In [11]
recoloring was shown to be efficient only in the case of dense
graphs (i.e. edge probability p > 0.8).

Finally it is worth pointing out the use of a MaxSAT encoding to
compute tight upper bounds, as proposed by Li and Quan in [12].
The relevance of the result is that given a concrete subproblem
graph, the bound obtained may be tighter than its chromatic
number. Tests carried out over uniform random graphs, showed
the proposed new algorithm MaxCLQ performing better than
leading BBMC for very dense graphs (i.e. p>0.9), but under-
performing badly in the large, sparse algorithms.

1.5. Motivation

A well known reason for the success of approximate coloring in
MCP is that while REFCOLOR is called just once at each node, every
color assignment c(v, e U) may be used in that same node as an
upper bound on w(G[W]), W< U={vy,v,,...,Vx_1}, as long as
c(ve W) < c(vy). Note that by choosing candidate vertices with
maximum color label in step 2, REFCLIQUE enforces this property
for every candidate vertex.

Moreover, since parameter k,,;; (lower threshold color label for
a possible clique improvement in the child node) can be computed
prior to coloring, a similar pruning effect may be obtained by
removing from the output set C, of REFCOLOR all C; subsets such
that i < kp,;,; vertices assigned to these sets will therefore not be
eligible at step 2 in the child node and thus implicitly pruned.

A number of questions come naturally from the previous
analysis. As only vertices with color assignments below k;,;;, will
be pruned, is it really necessary to compute the full SEQ coloring?
Intuitively, expanding vertices sorted by color captures structure
better, but is the overhead worthwhile?

It is important to note that in classical SEQ it is not possible to
determine a priori if an uncolored vertex v will be assigned a color
c(v) > kpmin. However class coloring encodes this knowledge implicitly:
these will be all remaining unlabeled vertices after C . _; has been
obtained.

Download English Version:

https://daneshyari.com/en/article/475621

Download Persian Version:

https://daneshyari.com/article/475621

Daneshyari.com

https://daneshyari.com/en/article/475621
https://daneshyari.com/article/475621
https://daneshyari.com

