Accepted Manuscript

Catalytic performance of Ni/γ -Al2O3 for hydrogenation of 2-ethyl-2-hexenal

Lili Zhao, Yi Wang, Hualiang An, Xinqiang Zhao, Yanji Wang

PII: S1566-7367(17)30405-3

DOI: doi:10.1016/j.catcom.2017.09.023

Reference: CATCOM 5205

To appear in: Catalysis Communications

Received date: 23 June 2017
Revised date: 28 August 2017
Accepted date: 26 September 2017

Please cite this article as: Lili Zhao, Yi Wang, Hualiang An, Xinqiang Zhao, Yanji Wang, Catalytic performance of Ni/ γ -Al2O3 for hydrogenation of 2-ethyl-2-hexenal. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Catcom(2017), doi:10.1016/j.catcom.2017.09.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Catalytic Performance of Ni/γ-Al₂O₃ for Hydrogenation of 2-Ethyl-2-hexenal

Lili Zhao, Yi Wang, Hualiang An, Xinqiang Zhao* zhaoxq@hebut.edu.cn, Yanji Wang

Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving,

School of Chemical Engineering and Technology,

Hebei University of Technology,

Tianjin 300130, China

*Corresponding author.

Abstract: The effect of reaction conditions on the catalytic performance of Ni/γ-Al₂O₃ was

investigated and the result showed that Ni/γ-Al₂O₃ showed excellent catalytic activity. However,

the catalytic performance of the recovered Ni/γ-Al₂O₃ catalyst declined dramatically. The fresh

and the recovered catalysts were comparatively analyzed by means of XRD, XPS and FT-IR

techniques. The result demonstrated that the main reason for the activity decline of the recovered

Ni/γ-Al₂O₃ catalyst is that the surface Ni has been reoxidized to NiO. After calcination and

reduction, the recovered Ni/γ-Al₂O₃ catalyst could be reused four times without a significant

decrease in its catalytic performance.

Keywords: 2-Ethyl-2-hexenal, 2-Ethylhexanol, Hydrogenation, Deactivation, Regeneration

1. **Introduction**

2-Ethylhexanol (2-EHO), an important plasticizer alcohol, is mainly used in the production of

plasticizers, coatings, adhesives and inks, etc. Nowadays, 2-EHO is produced via gas-phase

hydrogenation of 2-ethyl-2-hexenal in the presence of ZnO-CuO catalyst [1], which is in high

energy consumption. Therefore, development of economic and environmentally benign

2-ethyl-2-hexenal hydrogenation process and its catalyst is of academic and practical significance.

1

Download English Version:

https://daneshyari.com/en/article/4756277

Download Persian Version:

https://daneshyari.com/article/4756277

<u>Daneshyari.com</u>