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In this paper we introduce the Multimode Covering Location Problem. This is a generalization of the
Maximal Covering Location Problem that consists in locating a given number of facilities of different
types with a limitation on the number of facilities sharing the same site.

The problem is challenging and intrinsically much harder than its basic version. Nevertheless, it
admits a constant factor approximation guarantee, which can be achieved combining two greedy algo-
rithms. To improve the greedy solutions, we have developed a Variable Neighborhood Search approach,

based on an exponential-size neighborhood. This algorithm computes good quality solutions in short
computational time. The viability of the approach here proposed is also corroborated by a comparison
with a Heuristic Concentration algorithm, which is presently the most effective approach to solve large
instances of the Maximal Covering Location Problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A facility location problem consists in placing a number of
facilities to serve a set of demand centers, whose positions are
known, while optimizing a given objective function. The problem
admits several variants, based on the objective of the decision
maker and on the application setting. For a complete taxonomy of
facility location problems, the interested reader may refer to
ReVelle et al. [21].

In this paper we focus on a generalized version of the Maximal
Covering Location Problem (MCLP), first proposed by Church and
ReVelle [6]. The MCLP belongs to the class of discrete location
problems, i.e., problems with a finite set of demand centers and a
finite set of candidate locations. The MCLP does not require all the
demand centers to be served: its purpose is to locate a given
number of facilities maximizing the number, or the total weight, of
the served demand centers. Because of its wide applicability in the
real world, especially in the planning of service and emergency
facilities, the MCLP is a well-studied problem. Chung [5] reviewed
several other applications of the MCLP, such as data abstraction,
stock selection and classification problems. Other interesting
applications are those described by Dwyer and Evans [13] for the
selection of mailing lists, Daskin et al. [11] for flexible manu-
facturing, Hougland and Stephens [ 18] for air pollution control and
Melo et al. [19] for supply chain management.
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Since its proposal, the MCLP has been generalized in different
ways. Berman et al. [4] reviewed gradual cover models, coopera-
tive cover models and variable radius models. Ghiani et al. [15]
introduced a capacitated plant location problem where multiple
facilities can be opened in the same site. Rajagopalan et al. [20]
considered a multiperiod set covering location model in the field
of application of emergency medical services. Dell'Olmo et al. [12]
tackled the optimal location of intersection safety cameras on an
urban traffic network to minimize the impact of car accidents,
through a multiperiod variant of maximal covering location.

In this paper, we present the Multimode Covering Location
Problem (MM-CLP). This problem consists in placing a given
number of facilities of different types (hereafter called modes) to
serve demand centers that require different types of service. The
goal is to maximize the demand coverage over all the considered
modes. An additional restriction with respect to the MCLP is that
only a limited number of different modes can be activated in each
candidate facility site. A similar generalization for the uncapaci-
tated facility location problem has been recently proposed by
Arora et al. [2]. They present a 4-approximation LP-rounding based
algorithm for a class of problems with only two modes.

Possible applications of the MM-CLP refer to the distribution of
facilities addressed to different users in the same area (e. g., fire
stations and police stations). A similar situation occurs in the
location of a heterogeneous fleet of ambulances, some of which
might have an equipment and crew specialized in the treatment of
heart-strokes or other severe health conditions. Another common
application of covering location problems is in the design of nature
reserves for the protection of biodiversity: each land parcel can be
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subject to different types of protection, with a different impact on
the endangered species which populate the parcel. Finally, tele-
communication antennas with different radiuses and pointing in
different directions can be installed in the same site, covering
different subsets of users, but the number of antennas in each site
can be limited by the available space and by the need to avoid
reciprocal interferences.

The MM-CLP is N'P-hard because it includes the MCLP as a
special case. However, while medium-size instances of the MCLP
can be quickly solved by commercial solvers, even fairly small
instances of the MM-CLP prove much harder. Nevertheless, we
here prove that the MM-CLP admits two greedy algorithms with a
constant factor approximation guarantee. This extends in a non-
trivial way a similar property of the MCLP. To compute better
solutions, we also present a Variable Neighborhood Search (VNS)
algorithm, which implements a Very Large Scale Neighborhood
Search (VLNS) as its basic local search procedure. The hybridization
of VNS with other metaheuristic approaches is an active field of
research, see for example [9,17,3]. To evaluate the performance of
the proposed VNS approach, we have first compared it to a simpler
VNS implementation based on a polynomial-size neighbourhood.
Then, we have implemented an alternative approach, based on the
Heuristic Concentration (HC) framework developed by ReVelle et al.
[22]. To the best of our knowledge, HC is considered the state-of-
the-art heuristic for the MCLP.

The remainder of the paper is organized as follows. In Section 2
we formally define the problem, through a mathematical pro-
gramming formulation. The complexity and approximation prop-
erties of the MM-CLP are described in detail in Section 2.1. In
Section 3, we describe the VNS framework. Section 4 reports a
computational comparison of the VNS and HC algorithms on a set
of randomly generated benchmark instances, showing that the
former clearly outperforms the latter. Finally, Section 5 draws
some conclusions.

2. Mathematical model

Let I be a set of demand centers, J a set of candidate facility sites
and M a set of modes. The relation between facility sites and
demand centers in each mode can be represented with a binary
matrix: a;, = 1 if facility site j is able to serve demand center i in
mode m and a;;, = 0 otherwise. For each candidate facility site j € J,
there is a maximum number b; of modes that can be activated on
the site. The number of facility sites used in each mode, K, is
given and a weight w;,,, is assigned to each demand center i eI and
mode m e M. The MM-CLP requires to find a subset of facility sites
for each mode, such that the total weight of the served demand
centers is maximum.

Let x;, =1 if a facility of mode me M is located on site je],
Xjm = 0 otherwise; y;, =1 if demand center i e I is served in mode
me M, y;n, =0 otherwise. The MM-CLP can be formulated as fol-
lows.

maxz=>_ > WinYin (1a)

iel meM
Zaijmxjmzy,«m ielmeM (1b)
jel
> Xjm=Kn meM (1o
jel
> Xm<b; jel (1d)
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Yim€{0,1} ielmeM (1f)

The objective function (1a) maximizes the total weight of the
served demand centers. The covering constraints (1b) link the x
and y variables. For each mode, Constraints (1c¢) fix the number of
facilities to be placed. Constraints (1d) set the maximum number
of facilities (of different modes) that can be located in each site.
The integrality of the x and y variables is imposed by Constraints
(1e) and (1f).

We here add a few remarks about the formulation. First, note
that, once the x variables are fixed, the objective function and the
covering constraints implicitly assign integer values to the y vari-
ables. Therefore, Constraints (1f) can be relaxed to 0 <y;,, <1 for
all i e I, m e M. Second, the feasibility of the problem depends only
on the cardinality constraints (1c) and (1d): the problem is feasible
if and only if 3=, . yKm < 37; . ;b;. From the practical point of view
this condition is in general satisfied, because the number of can-
didate facility sites exceeds the number of facilities to be located. If
the problem is feasible, Constraints (1c) can be relaxed to <
inequalities.

2.1. Complexity and approximation properties

The decision version of the MM-CLP is AN’P-complete, because
the special case in which the set of modes is a singleton (| M| =1)
coincides with the MCLP. An alternative reduction to the MCLP can
be obtained allowing each candidate site to use all available modes
(bj=|M] for all je]). Under this assumption, in fact, Constraints
(1d) are redundant and the problem decomposes into | M| inde-
pendent instances of the MCLP, one for each mode.

The MM-CLP also includes as a special case the k-MCLP, which
requires to compute k disjoint solution of the MCLP such that the
sum of their values is maximum. This problem corresponds to
instances of the MM-CLP in which the number of modes is fixed to
k, only one facility can be located in each site (b;j=1) and the
facilities serve the same demand centers for all the modes.

In what follows, we present approximation properties for the
MM-CLP. These properties generalize the approximation results
provided by Vohra and Hall [24] for the MCLP. A maximization
problem is a-approximable when it admits a polynomial time
algorithm that provides on each instance P a solution Z(P) such
that Z(P)/z*(P) > a, where z*(P) is the value of the optimal solution
of P [14].

With the purpose of establishing the approximation results, we
first present two greedy algorithms. As it is customary for the
MCLP, in what follows we will also denote the facility sites as
columns and the demand centers as rows.

Algorithm Greedyl! (I,.J, M,a,b, K,w)
Zjm =0 forall j € J, m € M;
Lim, ={i €1 : ajjm =1} forall j € J, m € M,
for m :=1 to |M| do
for j :=1 to K,,, do
J = arg I;[IEa;( ie;,/m Wim;
Tjxm = 1 A
]jm = Ijm \Ij"‘m for aHJ € J;
if > sy, =bj- then J:=J\ {j*};
meM
end for

end for
return z;

Fig. 1. Pseudocode of Algorithm Greedy1.
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