Accepted Manuscript

One-step synthesis of urchinlike SnS/SnS2 heterostructures with superior visible-light photocatalytic performance

Kaili Yao, Jun Li, Shaoyun Shan, Qingming Jia

PII: S1566-7367(17)30320-5

DOI: doi: 10.1016/j.catcom.2017.07.019

Reference: CATCOM 5138

To appear in: Catalysis Communications

Received date: 3 May 2017 Revised date: 4 July 2017 Accepted date: 25 July 2017

Please cite this article as: Kaili Yao, Jun Li, Shaoyun Shan, Qingming Jia , One-step synthesis of urchinlike SnS/SnS2 heterostructures with superior visible-light photocatalytic performance. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Catcom(2017), doi: 10.1016/j.catcom.2017.07.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

One-step synthesis of urchinlike SnS/SnS₂ heterostructures with superior visible-light photocatalytic performance

Kaili Yao^a, Jun Li^a, Shaoyun Shan*^a, Qingming Jia*^a

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China

* Corresponding authors, Tel: +86-0871-65920353; Fax: +86-0871-3801114

E-mail address: shansy411@163.com; jiagm411@163.com.

Abstract: Urchinlike SnS/SnS_2 p-n heterogeneous composite photocatalysts were successfully synthesized by a one-step solvothermal method. The samples are characterized by XRD, XPS, SEM, TEM, BET and DRS. SnS/SnS_2 (Sn/S=39.87:60.13) heterostructure exhibited the higher photocatalytic activity, the removal efficiency of MO was 83.25% in illuminate 60 min, and degradation reaction was calculated by adopting the pseudo-first-order reaction kinetics, the k value was 3.351×10^{-2} min⁻¹ which was higher than pure SnS and pure SnS_2 under visible light irradiation. The mechanism of enhanced photocatalytic activity has been discussed through scavenger experiments. In addition, the main active species for degradation of methyl orange (MO) were investigated using electron spin resonance (ESR) measurement and the possible degradation pathway of MO was also presented.

Keywords: SnS/SnS₂; Urchinlike; Heterogeneous composites; Photocatalysts; Mechanism.

Download English Version:

https://daneshyari.com/en/article/4756388

Download Persian Version:

https://daneshyari.com/article/4756388

<u>Daneshyari.com</u>