
An Efficient FPGA-Based Direct Linear Solver

Zhenhua Jiang, Senior Member, IEEE
Energy Technologies and Materials Division

University of Dayton Research Institute
Dayton, OH, USA

Email: zjiang4@udayton.edu

Sayed Ata Raziei, Student Member, IEEE
Electrical and Computer Engineering

University of Dayton
Dayton OH, USA

Email: razieis1@udayton.edu

Abstract— This paper presents a novel method to finding
the solution to a system of linear equations efficiently by using a
reconfigurable hardware based real-time computational solver.
The presented linear solver is to directly solve the system of
linear equations through repetitively applying Gauss-Jordan
elimination to each column of an augmented matrix in parallel on
reconfigurable hardware, which can greatly accelerate the
solution procedure. Backward substitution is not needed, so the
computing latency can be further reduced. The main components
of the hardware solver include parallel data processing modules,
reusable memory blocks and flexible control logic units. By
considering pivoting, this solver can avoid the potential problem
of increasingly-large numbers after row operations. The salient
feature is that the latency of this solver is really low through
parallel processing, deep pipelining and flexible use of memory
blocks. For instance, the total latency of this linear solver is
controlled below 1000 clock cycles for a dense system of
dimension 32. On a Xilinx Vertex 6 FPGA of 200MHz, which has
a clock cycle of 5ns, the minimum latency can be as low as 5
microseconds. Applications of this hardware accelerated linear
solver may include, but are not limited to, real-time least square
estimation for sensor data, digital signal / video processing and
real-time circuit simulation. It can also find wide applications in
mathematical computing such as finding the inverse of a matrix,
computing determinants or ranks of matrices, etc.

Keywords—FPGA; systems of linear equations; direct linear
solver; Gauss-Jordan elimination; real-time computing

I. INTRODUCTION
Nowadays, the need of finding the solution to a large set of

simultaneous linear equations can be generally found in a vast
variety of scientific and engineering problems. A linear solver,
which aims to find the solution on a digital computing system,
can achieve such a goal easily and find wide applications in the
areas such as least square regression for sensor data [1], digital
signal/video processing [2], nonlinear model predictive control
[3], real-time circuit simulation [4], etc. It can also be used in
mathematical computing such as finding the inverse of a matrix,
computing determinants or ranks of matrices, etc.

Matrix operations are a common task for digital computers.
A system of linear equations can be easily re-arranged into a
matrix form, where each equation becomes a row in the matrix.
While all variables can be assembled and placed into a column
vector, x, the coefficients associated with the variables in all
equations will constitute a matrix, A. If an additional column
vector, b, is added to the right hand side, the system of linear
equations can then be represented in the matrix format by

In short, this can be described as Ax = b, where A is an NxN
matrix, b is an Nx1 vector, and x is an Nx1 vector.

In the literature, there exist two major types of methods to
solving the linear equation system: direct methods and iterative
methods. Direct methods include LU (lower-upper triangular)
factorization, QR factorization, Cholesky factorization, etc.,
which can be typically used for dense linear systems [5]-[7].
Iterative methods may include Jacobi, Gauss-Seidel and
relaxation iterations, which are suitable for sparse linear
systems [8]-[10]. This work considers a direct linear solver and
its real-time hardware implementation which aims to accelerate
the solution process by use of parallelism and pipelining.

A popular direct method is to use the Gaussian elimination
algorithm [11]. The Gaussian elimination procedure updates
the matrix continuously by applying a sequence of basic row
operations to the lower portion of the matrix until the lower
left-hand corner of the matrix becomes filled with zeros. Three
types of basic row operations include swapping two rows,
multiplying a row by a coefficient, and subtracting a multiple
of one row from another row. Following a series of operations,
a matrix can be transformed into an upper triangular matrix. A
backward substitution process can then be applied to find the
solution in sequence based on the upper triangular matrix.

A further-reduced method, called Gauss-Jordan Elimination,
is to eliminate one column in all rows except the pivot value or
diagonal entry within each iteration loop, which can be set to 1
by normalizing each row [12]. The resultant updated matrix
after all elimination iterations will be a unit diagonal matrix, so
the backward substitution is not needed. The solution vector
will be the last column of the updated augmented matrix, i.e.,
the solution value in each row is the last value of that particular
row vector. This method is not preferred in software solution
because it involves more arithmetic operations than traditional
Gaussian elimination method. However, on parallel processing
hardware, the Gauss-Jordan method is more efficient because
the hardware allows for parallel processing and elimination of
all rows simultaneously without increasing the processing time.

Field programmable gate arrays (FPGAs) are one type of
semiconductor IC devices that consist of a large number of

This work was sponsored by the “Ohio Research Scholar” funding
of the “Ohio Third Frontier” Program.

978-1-5386-3200-0/17/$31.00 ©2017 IEEE 159

reconfigurable logic units, many programmable input/output
blocks and interconnects [13]-[14]. Since those programmable
logic arrays on FPGAs are massively-parallel units, they
naturally allow for parallel processing of a large amount of data.
Clock signals generated from high-frequency oscillators enable
data processing and operation with a clock cycle of as low as 5
ns. Nowadays, user-friendly, high-level programming tools,
such as Xilinx System Generator [15], are available to be used
to program these reconfigurable logic devices, which can help
reduce the product development time. Another benefit is that
FPGAs perform deterministic computing, which makes timing
control easy, especially good for real-time implementation.

This paper presents an efficient method for the hardware
implementation of the direct linear solver based on FPGAs.
The presented linear solver is to directly solve the system of
linear equations through repetitively applying Gauss-Jordan
elimination to each column of an augmented matrix. The
hardware accelerator can exploit the inherent parallelism in the
algorithm of finding the solution, offering an efficient
implementation of the linear solver. The specific method and
algorithm flow chart will be discussed in Section II. Section III
will elaborate on the functionality and detailed implementation
circuit of each portion of the proposed linear solver. Section IV
will present two application examples of the linear solver,
focusing on the computational latency and resource utilization.
Section VI will conclude the paper and outline the future work.

II. EFFICIENT METHOD TO FINDING DIRECT SOLUTION TO
SYSTEMS OF LINEAR EQUATIONS

A. Gauss-Jordan Elimination Procedure
Fig. 1 illustrates the procedure about how the Gauss-Jordan

Elimination method, which is the foundation of the proposed
FPGA-based linear solver, can be used to solve the linear
system of equations. To facilitate the solution process and
parallel processing, a column-augmented matrix is formed, i.e.,
[A | b], by concatenating A and b, as illustrated in Fig. 1-a. The
row operations are then based on this augmented matrix [A | b],
where the number of columns is the number of rows plus one.
As demonstrated in Fig. 1-b, the main tasks of the repetitive
elimination in the Gauss-Jordan Elimination procedure include
the following three steps:

Pivot search: This step is to search the largest element, at
the current iteration, in a lower column that is below the pivot
element found and normalized at a previous iteration. As an
example, at the 4th iteration, the lower column may include the
elements below the entry associated with Row 3 (i.e., 1) in the
4th column. Upon completion of the search process which can
be done in parallel and with pipelining, the maximum value is
selected as the pivot element. By considering pivoting, the
potential problem of increasingly-large numbers following a
series of row operations could be avoided.

Row swap: This step is to exchange the found row with the
previous kth row. The row with the maximum value becomes
the new base row and the maximum value is placed in the pivot
entry. This operation can be achieved by updating the index of
the row vectors in the matrix, where the index is stored in a
separate vector. The practical movement of data in the memory
is not needed, thus the latency is greatly reduced.

Row update: This step is to update the right-hand side of
the augmented matrix in all the rows with the goal that the
pivot column will be replaced with one in the pivot entry and
zeros in all other rows. This step involves a major part of
arithmetic operations and can be done in parallel with efficient
memory and arithmetic units.

Within each iteration loop, an unknown variable in the
linear system of equations (i.e., corresponding to a column in
the matrix) can be eliminated. By the end of N iterations, the
matrix A becomes a unit diagonal matrix; therefore, the b
vector becomes x, as shown in Fig. 2-c.

(a) Augmented matrix

(b) Row operations

(c) Solution vector

Fig. 1. Illustration of the Gauss-Jordan Elimination procedure.

B. Algorithm Flow Chart
Based on the principles of the procedure explained above,

Fig. 2 shows the flow chart of the Gauss-Jordan elimination
algorithm in solving a linear system of equations. The main
steps in the flow chart are explained as follows. The first step is
to receive the input data in the format of an augmented matrix

160

Download English Version:

https://daneshyari.com/en/article/4756457

Download Persian Version:

https://daneshyari.com/article/4756457

Daneshyari.com

https://daneshyari.com/en/article/4756457
https://daneshyari.com/article/4756457
https://daneshyari.com

