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Abstract— This paper presents a novel method to finding 
the solution to a system of linear equations efficiently by using a 
reconfigurable hardware based real-time computational solver. 
The presented linear solver is to directly solve the system of 
linear equations through repetitively applying Gauss-Jordan 
elimination to each column of an augmented matrix in parallel on 
reconfigurable hardware, which can greatly accelerate the 
solution procedure. Backward substitution is not needed, so the 
computing latency can be further reduced. The main components 
of the hardware solver include parallel data processing modules, 
reusable memory blocks and flexible control logic units. By 
considering pivoting, this solver can avoid the potential problem 
of increasingly-large numbers after row operations. The salient 
feature is that the latency of this solver is really low through 
parallel processing, deep pipelining and flexible use of memory 
blocks. For instance, the total latency of this linear solver is 
controlled below 1000 clock cycles for a dense system of 
dimension 32. On a Xilinx Vertex 6 FPGA of 200MHz, which has 
a clock cycle of 5ns, the minimum latency can be as low as 5 
microseconds. Applications of this hardware accelerated linear 
solver may include, but are not limited to, real-time least square 
estimation for sensor data, digital signal / video processing and 
real-time circuit simulation. It can also find wide applications in 
mathematical computing such as finding the inverse of a matrix, 
computing determinants or ranks of matrices, etc.  
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I. INTRODUCTION 
Nowadays, the need of finding the solution to a large set of 

simultaneous linear equations can be generally found in a vast 
variety of scientific and engineering problems. A linear solver, 
which aims to find the solution on a digital computing system, 
can achieve such a goal easily and find wide applications in the 
areas such as least square regression for sensor data [1], digital 
signal/video processing [2], nonlinear model predictive control 
[3], real-time circuit simulation [4], etc. It can also be used in 
mathematical computing such as finding the inverse of a matrix, 
computing determinants or ranks of matrices, etc.   

Matrix operations are a common task for digital computers. 
A system of linear equations can be easily re-arranged into a 
matrix form, where each equation becomes a row in the matrix. 
While all variables can be assembled and placed into a column 
vector, x, the coefficients associated with the variables in all 
equations will constitute a matrix, A. If an additional column 
vector, b, is added to the right hand side, the system of linear 
equations can then be represented in the matrix format by 

 

In short, this can be described as Ax = b, where A is an NxN 
matrix, b is an Nx1 vector, and x is an Nx1 vector.  

In the literature, there exist two major types of methods to 
solving the linear equation system: direct methods and iterative 
methods. Direct methods include LU (lower-upper triangular) 
factorization, QR factorization, Cholesky factorization, etc., 
which can be typically used for dense linear systems [5]-[7]. 
Iterative methods may include Jacobi, Gauss-Seidel and 
relaxation iterations, which are suitable for sparse linear 
systems [8]-[10]. This work considers a direct linear solver and 
its real-time hardware implementation which aims to accelerate 
the solution process by use of parallelism and pipelining.  

A popular direct method is to use the Gaussian elimination 
algorithm [11]. The Gaussian elimination procedure updates 
the matrix continuously by applying a sequence of basic row 
operations to the lower portion of the matrix until the lower 
left-hand corner of the matrix becomes filled with zeros. Three 
types of basic row operations include swapping two rows, 
multiplying a row by a coefficient, and subtracting a multiple 
of one row from another row. Following a series of operations, 
a matrix can be transformed into an upper triangular matrix. A 
backward substitution process can then be applied to find the 
solution in sequence based on the upper triangular matrix. 

A further-reduced method, called Gauss-Jordan Elimination, 
is to eliminate one column in all rows except the pivot value or 
diagonal entry within each iteration loop, which can be set to 1 
by normalizing each row [12]. The resultant updated matrix 
after all elimination iterations will be a unit diagonal matrix, so 
the backward substitution is not needed. The solution vector 
will be the last column of the updated augmented matrix, i.e., 
the solution value in each row is the last value of that particular 
row vector. This method is not preferred in software solution 
because it involves more arithmetic operations than traditional 
Gaussian elimination method. However, on parallel processing 
hardware, the Gauss-Jordan method is more efficient because 
the hardware allows for parallel processing and elimination of 
all rows simultaneously without increasing the processing time.  

Field programmable gate arrays (FPGAs) are one type of 
semiconductor IC devices that consist of a large number of 
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reconfigurable logic units, many programmable input/output 
blocks and interconnects [13]-[14]. Since those programmable 
logic arrays on FPGAs are massively-parallel units, they 
naturally allow for parallel processing of a large amount of data. 
Clock signals generated from high-frequency oscillators enable 
data processing and operation with a clock cycle of as low as 5 
ns. Nowadays, user-friendly, high-level programming tools, 
such as Xilinx System Generator [15], are available to be used 
to program these reconfigurable logic devices, which can help 
reduce the product development time. Another benefit is that 
FPGAs perform deterministic computing, which makes timing 
control easy, especially good for real-time implementation. 

This paper presents an efficient method for the hardware 
implementation of the direct linear solver based on FPGAs. 
The presented linear solver is to directly solve the system of 
linear equations through repetitively applying Gauss-Jordan 
elimination to each column of an augmented matrix. The 
hardware accelerator can exploit the inherent parallelism in the 
algorithm of finding the solution, offering an efficient 
implementation of the linear solver. The specific method and 
algorithm flow chart will be discussed in Section II. Section III 
will elaborate on the functionality and detailed implementation 
circuit of each portion of the proposed linear solver. Section IV 
will present two application examples of the linear solver, 
focusing on the computational latency and resource utilization. 
Section VI will conclude the paper and outline the future work. 

II. EFFICIENT METHOD TO FINDING DIRECT SOLUTION TO 
SYSTEMS OF LINEAR EQUATIONS 

A. Gauss-Jordan Elimination Procedure 
Fig. 1 illustrates the procedure about how the Gauss-Jordan 

Elimination method, which is the foundation of the proposed 
FPGA-based linear solver, can be used to solve the linear 
system of equations. To facilitate the solution process and 
parallel processing, a column-augmented matrix is formed, i.e., 
[A | b], by concatenating A and b, as illustrated in Fig. 1-a. The 
row operations are then based on this augmented matrix [A | b], 
where the number of columns is the number of rows plus one. 
As demonstrated in Fig. 1-b, the main tasks of the repetitive 
elimination in the Gauss-Jordan Elimination procedure include 
the following three steps: 

Pivot search: This step is to search the largest element, at 
the current iteration, in a lower column that is below the pivot 
element found and normalized at a previous iteration. As an 
example, at the 4th iteration, the lower column may include the 
elements below the entry associated with Row 3 (i.e., 1) in the 
4th column. Upon completion of the search process which can 
be done in parallel and with pipelining, the maximum value is 
selected as the pivot element. By considering pivoting, the 
potential problem of increasingly-large numbers following a 
series of row operations could be avoided. 

Row swap: This step is to exchange the found row with the 
previous kth row. The row with the maximum value becomes 
the new base row and the maximum value is placed in the pivot 
entry. This operation can be achieved by updating the index of 
the row vectors in the matrix, where the index is stored in a 
separate vector. The practical movement of data in the memory 
is not needed, thus the latency is greatly reduced. 

Row update: This step is to update the right-hand side of 
the augmented matrix in all the rows with the goal that the 
pivot column will be replaced with one in the pivot entry and 
zeros in all other rows. This step involves a major part of 
arithmetic operations and can be done in parallel with efficient 
memory and arithmetic units.  

Within each iteration loop, an unknown variable in the 
linear system of equations (i.e., corresponding to a column in 
the matrix) can be eliminated. By the end of N iterations, the 
matrix A becomes a unit diagonal matrix; therefore, the b 
vector becomes x, as shown in Fig. 2-c. 

 
(a) Augmented matrix 

        
(b) Row operations 

 
(c) Solution vector 

Fig. 1. Illustration of  the Gauss-Jordan Elimination procedure. 

B. Algorithm Flow Chart 
Based on the principles of the procedure explained above, 

Fig. 2 shows the flow chart of the Gauss-Jordan elimination 
algorithm in solving a linear system of equations. The main 
steps in the flow chart are explained as follows. The first step is 
to receive the input data in the format of an augmented matrix 
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