Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Regeneration of sulfur-poisoned CeO₂ catalyst for NH₃-SCR of NO_x

Yun Shi^{a,b}, Shan Tan^a, Xiaoxiang Wang^a, Meifang Li^a, Sujing Li^{a,*}, Wei Li^a

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, Zhejiang University, Hangzhou 310027, China ^b Institute of Environmental Engineering, Zhejiang University, Hangzhou 310058, China

ARTICLE INFO

Article history: Received 30 April 2016 Received in revised form 25 July 2016 Accepted 1 August 2016 Available online 2 August 2016

Keywords: CeO₂ NH₃-SCR catalyst Sulfation Regeneration NO_x SO₂

ABSTRACT

The effects of regeneration on the activities and structure of CeO_2 catalysts for NH_3 -SCR of NO_x have been studied in this article. CeO_2 catalyst is deactivated by SO_2 for NH_3 -SCR of NO_x in a 200 h long-term operation at 350 °C due to the formation of sulfates, and its NO_x conversion decreases from 100% to 83% gradually. However, sulfates can be removed from sulfur-poisoned CeO_2 catalysts under high temperature thermal treatment in air. After regeneration, NO_x conversion of sulfur-poisoned CeO_2 catalyst is recovered to about 100% at 350 °C. Moreover, the regeneration temperature is related to the nature of the sulfates formed on the sulfur-poisoned CeO_2 catalysts. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cerium oxide is a common and inexpensive rare earth oxide. It has an ability to store and release oxygen. Addition of ceria in the catalyst helps form oxygen vacancies [1–5]. The Ce^{3+}/Ce^{4+} redox cycle plays an important role in catalytic reactions [6]. In view of these features, ceria-containing materials have attracted widely attention as SCR catalysts for NO_x reduction both in stationary sources and in mobile sources [7,8]. Although CeO₂ is a weakly basic oxide with poor NH₃-SCR activity [9–11], sulfated CeO₂ presents excellent NH₃-SCR activity [11–13]. The sulfur tolerance of SCR catalysts, such as Sb-V₂O₅-TiO₂, NiO-ZrO₂, Cu/ ZSM-5, and Fe/ β -zeolite, is also enhanced by the incorporation of CeO₂ [2,3,14,15]. From previous research, the improvement in SCR activity of CeO₂ by sulfation is mainly originated from the increase of NH₃ adsorption and the suppression of the catalytic oxidization of NH₃ to NO [11,12].

Although CeO₂ show excellent sulfur tolerance at the beginning of NH_3 -SCR reaction in presence of SO₂, this work presents that the NH_3 -SCR activity of CeO₂ decreases gradually in continuous operation. The formation of inactive sulfates is responsible for the deactivation because $Ce(SO_4)_2$ and $Ce_2(SO_4)_3$ are poisoning species for NH_3 -SCR reaction [16]. There are two common ways to regenerate deactivated catalyst, namely washing and thermal treatment. It has been reported that

sulfur-poisoned CeO₂ catalyst can be regenerated by H₂O washing [17]. However, the effects of thermal treatment on the characterization and activity of sulfur-poisoned CeO₂ catalysts have not been reported before. A comparison of the two methods to regenerate sulfur-poisoned CeO₂ catalyst is presented. This work shows that sulfur-poisoned CeO₂ catalyst could be regenerated under high temperature thermal treatment in air, but the low-temperature NH₃-SCR activity could only be partially recovered. To investigate the effects of regeneration, the physicochemical characterizations of the prepared catalysts are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscope (HRTEM) and Brunauer-Emmett-Teller (BET) method. These results will help us to further understand the effects of SO₂ on CeO₂-containing catalysts.

2. Experimental

2.1. Catalyst preparation

Cerium (III) nitrate hexahydrate (Ce(NO₃)₃ · 6H₂O), provided by Sinopharm Chemical Reagent Co. Ltd., was calcined at 550 °C for 4 h in air to obtain CeO₂ catalyst. Afterwards, the catalyst was sieved to 40– 60 mesh. The CeO₂ catalyst was sulfated at high temperature for 12 h in a mixture of 500 ppm SO₂, 10% O₂ and N₂ as balance gas. The obtained sulfated-CeO₂ catalysts are named as S-CeO₂-*x*, where *x* represents the sulfation temperature. The catalyst that was regenerated by calcining

^{*} Corresponding author. *E-mail address:* sujing-li@zju.edu.cn (S. Li).

at 850 °C in air was marked as Re-S-CeO₂-x. The Ce₂(SO₄)₃ was obtained by calcining Ce₂(SO₄)₃ \cdot 8H₂O at 550 °C for 4 h in air.

2.2. TPD experiment

Temperature-programed procedure was carried out to investigate the decomposition temperature of sulfate species on sulfur-poisoned catalysts using the SCR activity test reactor system. 0.04 g sample was purged with air at a flow rate of 400 mL min⁻¹. The temperature was then increased from 100 °C to 950 °C at a ramp rate of 10 °C min⁻¹.

2.3. Regeneration method

The regeneration procedure was carried out using the SCR activity test reactor system. 0.4 g sample was purged with air at a flow rate of 400 mL min⁻¹. The temperature was then increased from 100 °C to X °C at a ramp rate of 10 °C min⁻¹, and the dwell time at X °C is 20 min. X represents the regeneration temperature (730 °C for S-CeO₂-350 and 850 °C for S-CeO₂-500, respectively).

3. Results

3.1. Regeneration of sulfur-poisoned CeO₂ catalyst

A continuous experiment was done to evaluate the effects of SO_2 on NH_3 -SCR activity of CeO_2 catalyst, as shown in Fig. 1. NO_x conversion of CeO_2 catalyst increases sharply in the initial period, and reaches nearly 100%. The promotional effects of SO_2 on NH_3 -SCR activity of CeO_2 catalyst are originated from the enhancement of NH_3 chemisorption [11]. However, NO_x conversion gradually decreases from 100% to 83% during 200 h operation. This is due to the formation of sulfate species over CeO_2 catalyst [16]. Interestingly, the NO_x conversion is recovered to about 100% after regeneration.

To further investigate the effects of sulfur poisoning on NH₃-SCR activity of CeO₂ catalyst, CeO₂ catalyst is pretreated by sulfation at 500 °C. As shown in Fig. 1 inset, the NO_x conversion of S-CeO₂-500 is obviously lower than that of CeO₂. After regeneration, the NO_x conversion of S-CeO₂-500 is only partially recovered at low temperature, while it is fully recovered in the temperature range of 350 ~ 450 °C. The NH₃-SCR activity of Ce₂(SO₄)₃ is the poorest among all the prepared catalysts. This indicates that sulfates are a kind of inactive species for NH₃-SCR of NO_x.

As shown in Fig. 2, sulfur can be removed from the bulk of sulfur-poisoned CeO₂ catalysts according to TPD experiment. The regeneration temperature of S-CeO₂-350 is lower than that of S-CeO₂-500, and

Fig. 1. Regeneration of sulfur-poisoned CeO₂ catalyst. Reaction conditions: 500 ppm NO + 500 ppm NH₃ + 5% O₂ + 25 ppm SO₂ + N₂ balance. GHSV = 175,000 h⁻¹, 350 °C.

Fig. 2. The decomposition temperature of sulfate species on sulfur-poisoned catalysts.

lower amount of SO₂ is released from S-CeO₂–350. This indicates that fewer sulfates are formed on S-CeO₂–350 confirmed by lower catalytic activity of S-CeO₂-500 (Fig. S1). The decomposition temperature of Ce₂(SO₄)₃ is higher than that of S-CeO₂-500. It is reported that the nature of sulfate species over sulfated CeO₂ is changed from surface sulfates to bulk sulfates with increase of the sulfation temperature [17]. This indicates that surface sulfates are easier to be removed from sulfur-poisoned CeO₂ catalysts. Thus, we chose the S-CeO₂-500 catalyst as the typical sulfur-poisoned CeO₂ catalyst to study the effects of regeneration.

3.2. XRD and XPS analysis

As shown in Fig. 3, XRD peaks of CeO_2 match well with the JCPDS (card no. 43-1002) data. Sulfation process has only little effect on the intensity of the CeO_2 reflections of $S-CeO_2$ -350. However, new phase reflections are detected in the XRD pattern of $S-CeO_2$ -500. These new reflections are attributed to $CeOSO_4$ (JCPDS 39-0515), $Ce_2(SO_4)_3$ (JCPDS 01-0208) and $Ce(SO_4)_2$ [17], respectively. The reflections of sulfate species disappear after regeneration, and the reflections of CeO_2 recover in the XRD pattern of Re-S-CeO₂-500.

Fig. 3. The XRD patterns of ceria-based catalysts.

Download English Version:

https://daneshyari.com/en/article/4756732

Download Persian Version:

https://daneshyari.com/article/4756732

Daneshyari.com