FISEVIER

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Direct epoxidation of propylene to propylene oxide over RuO₂-CuO-NaCl-TeO₂-MnO_x/SiO₂ catalysts

Photchanan Phon-in ^a, Anusorn Seubsai ^{a,b,c,*}, Thanaphat Chukeaw ^a, Kanin Charoen ^a, Waleeporn Donphai ^{a,c}, Paweena Prapainainar ^a, Metta Chareonpanich ^{a,c,d}, Daniel Noon ^e, Bahman Zohour ^e, Selim Senkan ^e

- ^a Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ^b Center for Advanced Studies in Industrial Technology and Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ^c NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900, Thailand
- d Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
- e Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, United States

ARTICLE INFO

Article history: Received 5 May 2016 Received in revised form 13 July 2016 Accepted 20 August 2016 Available online 22 August 2016

Keywords:
Copper
Epoxidation
Manganese
Propylene oxide
Ruthenium
Tellurium

ABSTRACT

Multi-metallic RuO $_2$ -CuO-NaCl-TeO $_2$ -MnO $_x$ /SiO $_2$ catalysts were investigated for the epoxidation of propylene to propylene oxide (PO) using O $_2$ under atmospheric pressure. The metallic weight ratio and the total metal loading on SiO $_2$ support were optimized at Ru/Cu/Na/Te/Mn = 7.14/3.57/1.79/0.175/1.00 and 25.0 wt%, respectively. RuO $_2$ and CuO were determined to exhibit a critical bifunctional role for PO synthesis. These active sites were assisted by MnO $_x$ and TeO $_2$ to increase PO formation rate and by NaCl to reduce CO $_2$ formation. With using the Box-Behnken design, a maximized PO formation rate of 1258 g_{PO} h $^{-1}$ kg $^{-1}_{cat}$ was obtained by varying O $_2$ /propylene feed ratio and reaction temperature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Propylene oxide (PO) is a valuable chemical intermediate for producing various commercial materials [1]. Currently, the chlorohydrin, hydroperoxide and co-product processes are the commonplace for the commercial-scale production of PO. However, these routes either elicit adverse environmental impacts or incur large capital costs [1,2]. Hence, the gas-phase epoxidation of propylene (C_3H_6) directly, by using molecular oxygen, offers a simpler, cleaner and potentially much more cost-effective alternative but hinges on the discovery of a viable heterogeneous catalyst.

In the past two decades, several interesting catalysts with and without a support material have been reported. However, all have failed to reach the commonly accepted standard for economic sustainability: 70% PO selectivity and 10% C_3H_6 conversion (i.e. 7% PO yield) [3]. Agbased catalysts were initially studied because they were successfully used for ethylene epoxidation to ethylene oxide [4], but low PO selectivities (below 39%) with significant C_3H_6 conversions (1.4–46.3%) [3] in the C_3H_6 epoxidation due to the allylic hydrogen abstraction in intermediates resulting in complete combustion [5]. Au nanoparticles on TiO_2

E-mail address: fengasn@ku.ac.th (A. Seubsai).

support were first discovered by Haruta and coworkers in 1998 as giving nearly 100% PO selectivity but <1% propylene conversion [6]. Aubased catalysts have been developed and improved the C_3H_6 conversion to about 1.7–6.5% [6–14]. However, the catalysts require large amounts of co-fed H_2 , interacting with gold and O_2 for the in situ generation of hydroperoxy intermediate, which consequently works as an oxidant to react with C_3H_6 to generate PO molecules. Later in 2005, Cu-based catalysts have become much attractive for the C_3H_6 epoxidation by eliminating the need for H_2 addition [15]. Nevertheless, PO selectivities reported hardly exceed 50% at a wide range of C_3H_6 conversion (0.24–20%, 0.08–8.00% PO yield) [16–25].

Among these Cu-based catalysts, RuO $_2$ -CuO-NaCl/SiO $_2$ was the most active for PO production (\sim 40–50% of PO selectivity and 10–20% of C $_3$ H $_6$ conversion), 5–8% of PO yield or 153 g $_{PO}$ h $^{-1}$ kg $_{cat}^{-1}$ of PO formation rate. It has been suggested the vital role in the epoxidation route is provided by crystalline CuO $_x$. In this mechanism, O $_2$ favorably adsorbs onto the catalyst, specifically on a different component, which subsequently transfers O-atoms to the CuO $_x$ surface for PO synthesis [26]. Moreover, the addition of combustion-inhibiting promoters (such as K $^+$ [27], Cs $^+$ [28], NaCl [29] and KAc [21]) has been shown to enhance the PO selectivity and/or PO formation rate by reducing acidity of active surfaces [28], possessing an electronic effect to the adsorbed oxygen species to become electrophilic, which is effective for C $_3$ H $_6$ epoxidation [5], or lowering activation energy for PO formation [30].

^{*} Corresponding author at: Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.

144 Short communication

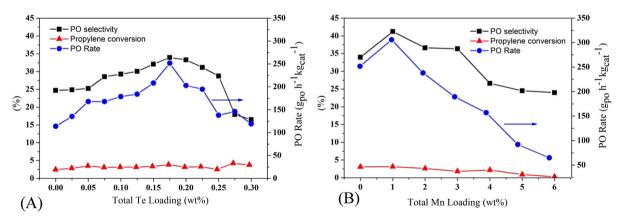
Herein, we investigate the most active Cu-based catalyst recently discovered, i.e. RuO_2 -CuO- $NaCl/SiO_2$, for the direct gas-phase epoxidation of C_3H_6 at under atmospheric pressure by modifying it with tellurium and manganese, focusing on the optimization of the PO formation rate. This new multimetallic catalyst significantly improves the PO formation rate relative to earlier reports of Cu-based catalysts. The role of each metal species is identified and operating conditions with two parameters (reaction temperature and O_2/C_3H_6 feed gas ratio) are also investigated using the Box-Behnken design to obtain the maximized PO formation rate.

2. Experimental

2.1. Catalysts preparation

The catalytic materials were all prepared by co-impregnation on amorphous fumed silica powder (SiO₂, Alfa Aesar) with aqueous mixtures of Ru [RuCl₃, Alfa Aesar], Cu [Cu(NO₃)₂, Ajax], Na [NaCl, Carlo Erba], Te [TeCl₄, Aldrich], and/or Mn [Mn(NO₃)₂ ·4H₂O, Alfa Aesar] at various metal ratios in a glass vial. Initially, different amounts of the aqueous Te solution were added into the mixture of Ru/Cu/Na at 7.14/3.57/1.79 by weight ratio. The mixtures were stirred at room temperature for 4 h, then stirred at 165 °C until dried, and calcined at 480 °C for 8 h in air. After the optimal weight ratio of Ru/Cu/Na/Te was achieved, a similar experiment with Mn was carried out (0.0–6.0 wt%). Subsequently, different total metal loadings of the optimal Ru/Cu/Na/Te/Mn ratio on SiO₂ were investigated from 5 to 33 wt%.

2.2. Catalytic performance evaluation


One-and-a-half milligrams of a prepared catalyst was packed in a quartz tube (0.5 cm in diameter) and sandwiched between two quartz wool plugs. As thin as possible a catalyst bed was used (~1 mm) in order to avoid complete combustion of the PO product. The reactant gases were O₂ (Praxair, 99.999%) and C₃H₆ (Linde, 99.5%) while He (Praxair, 99.999%) was used as an inert carrier. In the first step, the feed gas volume was $O_2/C_3H_6/He = 2/1/97$ at a total flow rate of $50 \text{ cm}^3/\text{min (GSHV} = 848 \text{ h}^{-1})$ regulated by mass flow controllers (KOFLOC 3810 DSII). The reactor temperature was 250 °C under atmospheric pressure. In the second step, the Box-Behnken design was applied to determine optimal conditions in order to obtain the maximized PO product. Two variables were studied in this work, i.e. reaction temperature (190–310 °C), O_2 to C_3H_6 ratio (2–20 by fixing the C_3H_6 feed at 1 vol%). Data analysis was conducted by on-line gas chromatography (Varian CP-4900 Micro GC with thermal conductivity detector (TCD), Porapak U (10 m) and Molecular sieve 5 Å (10 m). The product selectivities and C₃H₆ conversions were calculated on the basis of carbon balances [25], and PO formation rates were calculated by grams of PO that produced from a kilogram of catalyst in 1 h. The repeatability of all experiments was within \pm 10%.

3. Results and discussion

Before presenting the results, it is important to note that PO formation rate is the criteria for choosing the best catalyst or condition in each set of experiments, and that only PO, CO₂, and trace amounts (<1.0% product selectivity) of acrolein (AC) and acetone (AT) (see Fig. S1) were detected. Hence, the CO₂ selectivity for an experiment is essentially 100% minus PO selectivity. Fig. 1A presents the catalyst performance of Te loaded on RuO2-CuO-NaCl/SiO2 catalysts. Increasing Te loading from 0.0 to 0.175 wt% resulted in increase of PO formation rate rapidly from 113 $g_{PO}\ h^{-1}\ kg_{cat}^{-1}$ to the optimum at $252 \text{ g}_{PO} \text{ h}^{-1} \text{ kg}_{cat}^{-1}$. Similarly, the PO selectivities increased from 25% to 34%, while C₃H₆ conversions were virtually unchanged at about 2.8%. This could be because the numbers of active TeO₂ (denoted as TeO₂ because of its final form, see Figs. S2-S3) close by the main active site (i.e. the proximity of RuO₂ and CuO [26]) become higher dispersed, thereby improving PO formation. Above 0.175 wt% of the Te loading, the PO formation rate and PO selectivity decreased from the optimum to 119 g_{PO} h⁻¹ kg_{cat}⁻¹ and 17%, respectively, with a slight increase in C₃H₆ conversion from 2.8% to 3.6%. This is potentially because excessive amounts of TeO₂ block or cover the main active surface.

The catalyst exhibiting the optimal PO formation rate shown in Fig. 1A was selected to be doped with Mn from 0.0 to 6.0 wt%. The addition of Mn was deemed an attractive option because catalysts of Cu and Mn together increase PO yield compared to its unimetallic variants due to synergy between Cu and Mn [31–34]. The plots in Fig. 1B show the effect of Mn (denoted as MnO_x because of its final form, see Figs. S2–S3) loaded on RuO₂-CuO-NaCl-TeO₂/SiO₂ catalyst from 0.0 to 6.0 wt%. Increasing the Mn loading to 1.0% increased the PO selectivity and formation rate to 43% and 300 g_{PO} h⁻¹ kg $_{\rm cat}^{-1}$, respectively, whereas the C₃H₆ conversion remained relatively constant at 2.6%. At higher loadings (>1.0 wt% of Mn), the PO selectivity, C₃H₆ conversion, and PO formation rate started to decrease gradually. It is possible that excess MnO_x could obstruct the main active site and, in itself, become the dominant active material, consistent with the fact that Mn-based catalysts produce mostly CO₂ product [31].

To further optimize the performance of the multimetallic RuO_2 - $CuO-NaCl-TeO_2$ - MnO_x/SiO_2 catalysts, an investigation of the effects of total metal loading on the SiO_2 support was undertaken. The results are shown in Fig. 2. [FE-SEM images showing each metal distribution are presented in Figs. S4–S11]. Increasing the total metal loading from 5.0 to 25.0 wt% significantly increased the PO formation rate, from 41 to 641 g_{PO} h^{-1} kg_{Ca}^{-1} . Similarly, the PO selectivity and the C_3H_6 conversion also gradually increased, from 28 to 32% and 0.6 to 5.2%, respectively.

 $\textbf{Fig. 1.} \ (A) \ Te \ loading \ on \ Ru-Cu-Na/SiO_2 \ at \ 0.00-0.30 \ wt\% \ (Ru/Cu/Na = 7.14/3.57/1.79 \ by \ wt\%) \ (B) \ Mn \ loading \ on \ Ru-Cu-Na-Te/SiO_2 \ at \ 0.0-6.0 \ wt\% \ (Ru/Cu/Na/Te = 7.14/3.57/1.79/0.175 \ by \ wt\%).$

Download English Version:

https://daneshyari.com/en/article/4756748

Download Persian Version:

https://daneshyari.com/article/4756748

<u>Daneshyari.com</u>