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a b s t r a c t

We consider a continuous multi-facility location allocation problem where the demanding entities are
regions in the plane instead of points. The problem can be stated as follows: given m (closed, convex)
polygonal demand regions in the plane, find the locations of q facilities and allocate each region to
exactly one facility so as to minimize a weighted sum of squares of the maximum Euclidean distances
between the demand regions and the facilities they are assigned to.

We propose mathematical programming formulations of the single and multiple facility versions of
the problem considered. The single facility location problem is formulated as a second order cone
programming (SOCP) problem, and hence is solvable in polynomial time. The multiple facility location
problem is NP-hard in general and can be formulated as a mixed integer SOCP problem. This formulation
is weak and does not even solve medium-size instances. To solve larger instances of the problem we
propose three heuristics. When all the demand regions are rectangular regions with their sides parallel
to the standard coordinate axes, a faster special heuristic is developed. We compare our heuristics in
terms of both solution quality and computational time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The single-facility location problem (SFLP) consists of determin-
ing the location of a single facility that will serve a set of customers
(demand points or regions) while minimizing some objective
function, usually a function of the distances between the facility
and the locations of the customers. The Fermat–Weber problem or
Weber problem is a well known SFLP which concerns locating a
facility with an objective of minimizing the weighted sum of the
(Euclidean) distances between the facility and the customers
(weights are positive scalars), see [1,2]. A common approach for
solving the problem is known as the Weiszfeld method [3]. It is an
iterative method that expresses and updates the facility location as
a convex combination of the locations of the customers.

In the multi-facility location allocation problem (MFLP) each
customer is assigned to a single facility and the problem is to
determine the optimal locations of a (given) number of facilities,
as well as the optimal assignments of customers to facilities.

In some MFLP cases the facilities can be located at a given
subset of the plane, in particular at a finite list of candidate sites.
This constrained, or discrete, MFLP was first considered by Hakimi [4],
and is often solved by mixed integer programming, see [5]. In the

continuous, or unconstrained, MFLP, however, facilities can be located
anywhere in the plane.

The continuous MFLP can also be considered as a clustering
problem, where customers and facility locations correspond to data
points and centers, respectively, and a clustering criterion is to be
minimized. If the clustering criterion is to minimize the sum of
squared distances then MFLP reduces to the minimum sum of
squares clustering problem.

We study here a continuous multi-facility location allocation
problem, where demanding entities are demand regions (instead of
demand points) in the plane. We assume that each facility has
unlimited capacity and can handle all the customers assigned to it.
For the following three cases, it would be more appropriate to
represent a demanding entity as a region instead of a fixed point:

1. The size of the demanding entity may not be negligible with
respect to the distances in the problem.

2. The location of the demanding entity may follow a bivariate
distribution on the plane.

3. The number of demanding entities may be so large that it may
be more appropriate first to cluster them into regions instead of
treating each one separately.

The problem we consider can be stated as follows: given m
demand regions in the plane and a positive weight for each region,
find the locations of qZ1 facilities and allocate each region to
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exactly one facility so as to minimize the weighted sum of squares
of the maximum Euclidean distances between the demand regions
and the facilities they are assigned to.

The maximum distanced point of a region to a facility does not
change if the convex hull of the demand region is taken. Therefore,
we restrict ourselves to the case where the demand regions are
convex regions. Since any region can be approximated in any
accuracy by a polygon, here we represent each demand region as
a (closed) convex polygon.

This problem (with polygonal demand regions) is NP-hard in
general. When each demand region is a single point, the problem
reduces to the minimum sum of squares clustering problem which
is NP-hard, in general [6].

We first show that the single facility location problem (with
polygonal demand regions) can be solved in polynomial time as it
can be modeled as a second order cone programming (SOCP)
problem. We then formulate the multiple facility location problem
as a mixed integer SOCP problem. The formulation is a big-M
formulation and is weak. It does not even solve medium-size
instances within 5 h. To be able to find good solutions for larger
problem instances, we propose three heuristics. For small size
instances, we compare the solutions of the heuristics with the
exact solutions. Moreover, a special case heuristic is developed
when the regions are of rectangular shape with sides parallel to
the standard coordinate axes.

First heuristic is an alternate location–allocation heuristic. We
call it as the SOCP based alternate location allocation heuristic
(SOCP-H). When the locations of the facilities are given, each
region is assigned to a facility that minimizes the maximum
distance between the region and the facility (allocation step).
When the allocations of the regions to the facilities are known,
the location algorithm solves q SOCP problems to determine the
location of the facilities (location step). Starting with an initial
placement of the facilities, this heuristic repeats allocation and
location steps until a stopping condition is reached.

Second heuristic also follows alternate location–allocation
scheme. It is named as the max point based alternate location
allocation heuristic (MP-H) and has the same allocation step with
SOCP-H. It is different from SOCP-H in the location step where only
one point from each demand region is taken into consideration.
When the allocations are known, updated location of a facility is
computed by averaging the farthest points of the allocated regions
from the previous location of the facility (location step). Again,
allocation and location steps alternate as in SOCP-H.

The mathematical modeling of the problem is nondifferenti-
able. Third heuristic called as the smoothing based heuristic (SBH) is
based on a smoothing strategy which substitutes nondifferentiable
functions with continuously differentiable functions. We convert
the smoothed problem into an unconstrained nonlinear problem
using the implicit function theorem and then solve it with a quasi-
Newton algorithm.

The last heuristic is proposed for the special case of rectangular
regions that is also an alternate location allocation heuristic and is
entitled as the line based heuristic (LBH). It has the same allocation
step with the previous alternate location allocation heuristics.
But its location step is quite different. When the allocations of the
regions to the facilities are known, algorithm solves q single-
facility location problems by converting each one into two single
facility location problems on the line. The optimal solutions of
these two problems on the line give the coordinates of the optimal
solution of the single facility location problem on the plane.

The plan of the paper is as follows: Section 2 reviews the
previous work on SFLP and MFLP with demand regions. Section 3
introduces the notation and describes the multi-facility location
problem studied in this paper. In Section 4, mathematical pro-
gramming formulations of the single and multiple facility location

problems are presented. Section 5 describes the details of the
proposed heuristics. Section 6 introduces a special heuristic for
the case with the rectangular demand regions. Section 7 presents
the results of the computational experiments. Finally, Section 8
concludes and provides future research directions.

2. Literature review and related work

The distance between a region and a facility can be measured in
various ways. Commonly one of the following three different
distance definitions is used for measuring the distance between
a demand region and a facility, see [7]:

� maximum (farthest) distance,
� minimum (closest) distance,
� expected distance.

In the literature, expected distance has been extensively used in
solving MFLP with demand regions. This distance may be mean-
ingful when the distance from each facility to every point in each
region is important.

Love considered the situation in which the number of demand
points is too large to treat each one as a discrete point [8]. The
author introduced the possibility of grouping the demand points
into demand areas and divided the total population area under
consideration into rectangular regions with known dimensions.
The objective is to find the location of a facility so as to minimize
total expected Euclidean distances between the rectangular
regions and the facility. The author proved that the objective
function is convex and developed a response-surface technique for
solving the problem.

In [9], the authors extended the study in [8]. Love assumed that
each demand region is rectangular and has uniform population
density. These assumptions ease the complex integral expressions.
However in [9], these complex expressions were handled by
replacing the demand regions with their centroids. These demand
regions are not necessarily rectangular and the population need
not be uniformly distributed over the demand regions.

Cooper [10] considered a stochastic extension of the Weber
problem. In his paper, the location of the demanding entities was
not predetermined but random variables with a given probability
distribution and the problem is to minimize the sum of the
expected values of the Euclidean distances between the demand-
ing entities and the facility. The probability distribution used in the
study was a bivariate normal distribution with two uncorrelated
random variables.

Aly and Marucheck [11] tried to locate one or more facilities to
serve existing rectangular regions using rectilinear norm. The
objective is to minimize total weighted expected distances. The
problem was decomposed into two subproblems, one for each
coordinate. The objective function was shown to be convex and
nondifferentiable and a gradient-free direct search method was
proposed for solving the problem.

Carrizosa et al. [12] introduced a general notation for a class of
problems where both demanding entities and the facilities can be
regions. The notation was inspired by Kendall's notation in Queu-
ing Theory. The objective function considered was to minimize the
sum of the expected distances. The work showed the similarities
and the differences between the generalized Weber problem and
its classical point version.

In the regional Weber problems, evaluation of the objective
function, i.e., calculation of the bidimensional integral, has high
computational cost. To avoid this, approximation by centroids or
disks centered at centroid was used in the literature. Former
approximation is mostly dependent to the norm used and shape
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