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a b s t r a c t

Real world location problems often involve a large number of demand point (DP) data such that the
location models become computationally intractable. DP aggregation is a viable means to address the
problem by aggregating the original DPs to a smaller set of representative DPs. Most inevitably, though,
DP aggregation accompanies a loss of information in the original data and results in errors in the location
solution. As such, there is an inherent trade-off between the extent of aggregation and the amount of
errors. For covering problems, Current and Schilling (1990) [3] developed an error-free aggregation
method based on a key concept that we define in this paper as common reachability set (CRS). While
their method provides error-free aggregation solutions to covering problems with binary coverage, it is
not applicable to more general and practical cases where the coverage of facilities gradually decreases.
We address this limitation by refining the CRS concept. Our method, which we call an approximate CRS
(ACRS) method, can be viewed as a generalized version of the original method by Current and Schilling.
Using randomly generated DPs data and data from a real world application, we demonstrate the
effectiveness of the ACRS method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The establishment of service facilities typically requires large
investment and has a wide-ranging and lasting socio-economic
impact. Thus, selecting locations for new facilities is an important
strategic decision. The goal of facility location problems is to
determine the optimal locations of servers in order to effectively
service demands. The use of mathematical models to solve location
problems has a long history dating back to the early 20th century,
and location problems have since motivated many operation
researchers to develop models and solution algorithms [6,18,38,43].

In many location problems, the demand for service is repre-
sented by a finite set of points, referred to as demand points (DPs).
Real-world location problems often involve a large number of DPs.
For example, DPs can be residential addresses in a city, locations of
callers requesting ambulances, etc. Since many location problems
are NP-hard [30], the number of DPs in a location problem can
cause computational intractability. This intractability is an impor-
tant concern for practical applications of location models.

To maintain computational tractability, one may reduce the size
of DPs by aggregating the original DPs into a smaller subset. This, of
course, comes at a cost: aggregating the original DPs into a subset is

inevitably accompanied by a loss of information in the demand data
and, consequently, errors in the location solutions. Thus, there is a
trade-off between the amount of error due to aggregation and the
problem's tractability. If we aggressively aggregate the original DPs
to achieve computational tractability, the error due to aggregation
may become so large that the quality of the location solution
becomes less than desirable. This has led Fotheringham et al. [20]
to a strong concern: “…therefore question[s] the reliability of any
locational recommendations from a location allocation problem
when aggregate demand points are used.” An effective DP aggrega-
tion scheme should reduce the size of DPs to achieve computational
tractability while minimizing the aggregation errors.

In this paper, we present a DP aggregation method that intro-
duces near zero errors particularly for covering problems. We focus
on covering problems primarily for two reasons. First, the literature
on DP aggregation indicates that relatively little attention has been
paid to covering problems, whereas most prior research on DP
aggregation deals with p-median problems (see Section 2). Second,
Current and Schilling [12] have developed a DP aggregation method
for covering problems that does not introduce errors. This method,
discussed in Sections 2 and 3 in this paper, uses information on
candidate facility sites as well as the locations of DPs to eliminate
aggregation errors.

While it provides error-free aggregation solutions, the DP aggrega-
tion method proposed by Current and Schilling [12] has a limitation – it
requires a binary coverage definition. In many practical applications of
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location problem, binary delineation of service coverage can be arbitrary
and problematic, and a gradual coverage is often a better description of
service coverage. A gradual coverage is used when the coverage quality
(or service quality) decreases as a function of distance between the
demand point and a facility providing the service. The main advantage
of using a gradual coverage is that it allows a location model to directly
account for the coverage quality, avoiding arbitrary delineation between
a success and failure in service provision. Fig. 1 shows two extreme
examples where a binary coverage definition yields an unrealistic and
undesirable interpretation.

To address the problem illustrated in Fig. 1, a gradual coverage
covering problem was first proposed by Church and Robert [10], and
it has been followed by many variants. For example, Berman and
Krass [6] proposed a gradual covering problem with a step-coverage
function; Karasakal and Karasakal [29] and Eiselt and Marianov [15]
developed gradual covering problem in the maximal covering loca-
tion problem and location set covering problem framework, respec-
tively; Drezner et al. [14] incorporated uncertainty in coverage radius.
These models are applied to a variety of location problems where the
quality of service perceived at a demand point is a function of the
distance from a facility providing the service. Examples include
location problems in emergency medical service, telecommunication,
and defence applications. In ambulance location problems, it is
important that an ambulance arrives at a patient scene as quickly
as possible. This time-criticality can be modeled by a survivability
function that gradually decreases as the time for an ambulance to
arrive at the scene increases. A survivability function has been used
in many ambulance location studies, e.g. [9,17,32]. An example in
telecommunication applications is a signal transmitters (cell-phone
towers) location problem [25,36]. Level of coverage by a cell phone
tower is represented by the signal strength at the location, which is a
decreasing function of the distance from the tower. Defence applica-
tions include missile and radar location problems, where kill prob-
ability by a missile attack or detection probability of a radar is a
decreasing function of the distance between the target and a missile
station or radar location [28,37].

Motivated by the limitation of Current and Schilling's method,
we build on a crucial concept introduced by Current and Schilling,
which we describe in this paper as a common reachability set
(CRS). We generalize the definition of CRS, which allows us to
aggregate DPs without any error for a stepwise coverage function
case. Then, combining with approximation of a gradual coverage
function to a stepwise function, we develop a generalized version
of a CRS-based aggregation method. Contributions of this paper
are threefold. First, our aggregation method, which we refer to in
this paper as approximate CRS (ACRS), can be applied to covering
problems with any gradual coverage function. Second, it delivers
reliable aggregate DPs as it introduces almost negligible amount of
aggregation errors. Third, with the generalization, the central idea
of CRS-based aggregation can be applied in other types of location
problems, p-median and p-center problems.

This paper is organized as follows. We first present related work on
the definition of aggregation errors and the existing aggregation
methods in Section 2. Section 3 discusses the details of our proposed
method to describe howwe generalize Current and Schilling's method.
Then, using randomly generated DPs as well as those from a real-world
application, we demonstrate the effectiveness of the proposed aggre-
gation method in Section 4, and explain the mechanism behind it in
detail in Section 5. Finally we conclude our paper in Section 6

2. Related literature

Research on DP aggregation dates back to the late 1970s.
Francis et al. [22] provide a comprehensive review of the subject.
Two main questions studied in the literature are: defining a
measure for aggregation errors, and developing aggregation
methods that reduce aggregation errors.

Several aggregation error measures have been developed, as
summarized in Francis et al. [22]. While the distance between DPs
and their corresponding aggregate DPs (ADPs) is the most direct
measure of aggregation error, many aggregation error measures are
defined with respect to a location solution X. For example, the distance
difference error is defined as the difference between the distance from a
DP to the closest server in X and from its corresponding ADP to the
server. The reason for comparing DPs and ADPs through a location
solution X is that we want to measure aggregation error in terms of its
consequences for location solutions. As Francis et al. [22] put it, “the use
of ADPs is the cause of the aggregation error, but there are error effects.”
The crucial factor in aggregating DPs is whether using ADPs instead of
DPs results in a suboptimal location solution. The most direct method
for measuring aggregation effects is to consider the objective function
value or the location solution. Such measures include the optimality
error, the coverage error,1 and the location error [8,13].

Optimality error measures the quality of an approximate
location solution by the extent to which its actual coverage differs
from the optimal coverage. It is defined as the difference between
the actual objective function value of a solution found using ADPs
and the objective function value of the solution found using the
original DPs. The latter is the true optimal coverage for the original
problem. Often a relative optimality error is reported by dividing
the difference by the true optimal objective value.

Coverage error is a measure of how well the approximate
location problem – i.e., a location problem with ADPs instead of
the original DPs – estimates the original location problem. It
measures the difference between the predicted and true coverage
values by the location solution obtained from using ADPs. This
error is important because over-prediction (under-prediction) of
the true coverage can lead to less investment (greater investment)
than is actually needed [13].

Location error is a measure of the difference between the true
optimal location solution and a location solution by using ADPs,
and is the most explicit measure of the effects of DP aggregation.
Unfortunately, this concept is not quite practically applicable for a
few reasons [22]. For example, measuring the difference between
two location solutions can be arbitrary when the dimension of the
solutions is greater than 2. Also, it is known that the objective
function may well be relatively flat in the neighborhood of the true
optimal solution [16]. This implies that even when an approximate
location solution is very different from the true optimal locations,
the objective function value from the approximate solution may be
close to the true optimal objective value.

In fact, it has been reported that location solutions are much
more sensitive than objective function values to DP aggregation
[20,24,35]. In other words, location error (however it is defined)
tends to be much larger than optimality error. As mentioned in
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Fig. 1. Two examples where a binary coverage function may not be an appropriate choice for coverage definition. Left: two adjacent demand points are arbitrarily labeled as
success vs. failure. Right: advantage (better service quality) provided by a server on the right is not accounted for.

1 Coverage error, defined for covering problems by Daskin et al. [13], corresponds
to the “cost estimate” error for p-median problems in Casillas [8].
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