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a b s t r a c t

We consider a finite capacity single server queue in which the customers arrive according to a Markovian
arrival process. The customers are served in batches following a ‘general bulk service rule’. The service
times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the
joint distribution of the random variables of interest at various epochs. Efficient computational
procedures in the case of phase type services are presented. An illustrative numerical example to bring
out the qualitative nature of the model is presented.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Bulk service queues have applications in many areas notably in
production and manufacturing, transportation, package delivery, tour-
ism, and amusement parks such as Disney World and Six Flags. For
example, in production and manufacturing applications, it may not
always be efficient to start the production as soon as the orders arrive.
Instead, one has to wait until a certain number of orders are placed to
start the process. Similarly, disposing hazardous petrochemicals and
petroleum wastes (that arrive in containers or drums) may need
thermal treatment using high temperatures, and hence processing
them efficiently require grouping them with a minimum number and
maximum number of containers. In the amusement park set up
people queue up for going through various thrill rides and all of these
are accommodated in groups of varying sizes with restrictions on the
minimum and maximum numbers in each ride. In package delivery
example, it is always better to fill the trucks (of varying sizes) to their
capacity to balance the cost/efficiency to the delivery times of the
packages. Thus, one can see the variety of scenarios that call for bulk
service queues in real-life applications [1–6].

Queueing systems in which the services are offered in batches
of varying sizes have been extensively studied in the literature
[2–18]. In such queueing systems the customers are served in
batches of sizes varying from a minimum size of ‘a’ to a maximum
size of ‘b’ and this service rule is referred to as the ‘general bulk

service’ (GBS) rule by Neuts [16]. The book by Chaudhry and
Templeton [12] provides an in-depth study of bulk service queue-
ing systems.

Thus, one can categorize the study of bulk service queueing
systems as follows. The bulk service queueing systems in which the

1. buffer size is (a) finite or (b) infinite;
2. arrivals occur according to a (a) renewal or (b) correlated

process;
3. arrivals occur (a) singly or (b) in batches;
4. services are (a) independent of the batch size or (b) dependent

on the size of the batch being served;
5. service times are (a) exponential or (b) non-exponential.

While the literature is abundant with queueing systems dealing
with cases falling in the intersection of (1), (2a), (3), (4a), and (5a),
very few papers deal with case (2b) in combination with 4
(b) and 5(b).

Earlier work on bulk service queueing systems in which the
services depend on the batch size includes Curry and Feldman [19]
and Neuts [20]. Further, Bar-Lev et al. [3] and Chaudhry and Gai
[21] both considered an M=Gða;bÞ

r =1 queue and obtained the queue
length distribution at departure epochs. One may note here that
neither Bar-Lev et al. [3] nor Chaudhry and Gai [21] obtained the
queue length distribution at an arbitrary epoch which is required
to compute various performance measures. Also from their analy-
sis one cannot obtain the joint distribution of the number of
customers in the queue and the number in the departing batch at
a departure epoch or the joint distribution of the number of
customers in the queue and the number in the service at an
arbitrary epoch. These distributions are needed in order to apply
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any batch-size-dependent service policy to a bulk service
queueing system. In view of this Banerjee and Gupta [22] analyzed
an M=Gða;bÞ

r =1=N queue and obtained all such distributions. Claeys
et al. [4] analyzed an infinite buffer discrete-time bulk arrival and
bulk service queue with GBS rule assuming the service time to be
dependent on the size of the batch. They obtained the steady-state
probability of the number in the system employing probability
generating function approach. For recent development in this
direction, see e.g., [23,24], and the references therein.

While the papers referenced above all dealt with renewal arrivals,
there exists some literature on bulk service queueing systems [25–32]
in which the customers arrive according to a versatile point process,
namely, Markovian arrival process (MAP). The MAP is a rich class of
point processes that includes many well-known processes such as
Poisson process, phase type (PH) renewal processes, and Markov-
modulated Poisson process. It has been observed that modern tele-
communication networks/ATM networks support diverse traffics with
different service characteristics such as voice, data and video. In such
network, IP packets or cells of voice, video, data are sent over a
common transmission channel on statistical multiplexing basis. These
traffic streams are statistically multiplexed and transmitted in super
high speed and also they are highly irregular (e.g., bursty and
correlated). A good representation of such traffic is a Markovian arrival
process. Further, MAP is very useful to model situations where the
inter-arrival times are no longer independent. For example, in
applications where the arrivals are generated from different sources
the pooled input will not necessarily follow a renewal process (even if
the individual sources are renewal). This is very common in produc-
tion and manufacturing, computer communications, transportation,
and other areas wherein the model under study is very much
applicable. When the arrivals occur in batches in the context of MAP,
we refer to that arrival process as BMAP. For more details on BMAP
processes and their usefulness in stochastic modeling, we refer to
[33,34], and for a review on MAP and BMAP, we refer the reader to
[33,35–39].

Chakravarthy [27] and Gupta and Laxmi [28] both analyzed
single server finite buffer bulk service queues with MAP arrivals
and with GBS rule for the services. Chakravarthy [27] analyzed a
finite-capacity MAP=Gða;bÞ=1 queue where the upper threshold, ‘b’,
is taken as the buffer size. Later, Gupta and Laxmi [28] considered
a more general model than the one considered by Chakravarthy
[27], and assumed that the buffer size, N, is greater than the upper
threshold value ‘b’, and obtained the queue length distribution at
various epochs. In the context of a multi-server queueing system
withMAP arrivals, exponential group services with batches of sizes
between two pre-determined thresholds, and a dynamic service
rule that governs the size of the batch at the time of starting a
service, Chakravarthy and Alfa [40] studied a bulk service queue-
ing system using matrix-analytic methods. Recently, Banik [26]
analyzed BMAP=Gða;bÞ=1=N and BMAP=MSPða;bÞ=1=N queues and
obtained the queue length distributions for both models. But in
all of these papers the service times are assumed to be indepen-
dent of the serving batch size.

In Chakravarthy and Alfa [41] a finite capacity queuing system
with MAP arrivals attended by two exponential servers, who offer
services in groups of varying sizes, is studied. Here the authors
assume that the service times may depend on the number of
customers in service. Efficient algorithmic procedures for computing
the steady-state queue length densities and other system perfor-
mance measures are discussed. A conjecture on the nature of the
mean waiting time is proposed. Some illustrative numerical exam-
ples are presented. Alfa et al. [42] studied a discrete queueing system
with MAP arrivals and PH services in batches of size ranging from
1 to a fixed threshold. Under a probabilistic service rule, which
depends on the number of customers waiting in the queue, the
authors show that the steady-state probability vector is (modified)

matrix-geometric type [43]. Using a dynamic probabilistic rule
associated with group (the size of which varies from a pre-
determined threshold to the maximum buffer size) services, assum-
ing MAP arrivals and exponential services whose parameter depends
on the size of the batch, Chakravarthy and Bin [44] developed
efficient algorithms for computing various performance measures
such as throughput, mean number served, job overflow probability
and server idle probability, useful in qualitative and quantitative
interpretations of the model.

Most of the papers dealing with batch-size-dependent services
assume the service times to be exponential except in Alfa et al. [42]
where it is of PH type. But this one, as mentioned earlier, is studied in
discrete time. In view of these, to fill the gap in the present literature,
in this paper we study a continuous time finite capacity single server
queue where arrivals occur according to a MAP with representation
ðC;DÞ of order m. The services are offered in batches of size varying
from a minimum size a to a maximum value of b. The service time
distribution of the batch is assumed to be arbitrarily distributed and
dependent on the batch size. Henceforth, we denote this model by
MAP=Gða;bÞ

r =1=N. For analytic analysis of this model we use the
embedded Markov chain technique and first obtain the joint distribu-
tion of the number of customers in the queue, the number in the
departing batch, and the phase of the arrival process at a departure
epoch. Then using the supplementary variable technique and con-
sidering the supplementary variable as remaining service time of the
batch undergoing service, we develop relations between arbitrary and
departure epoch probabilities in order to obtain the joint distribution
of the number of customers in the queue, the number in service, and
phase of the arrival process at an arbitrary epoch. Then we obtain
arrival epoch probabilities by deriving relations between arbitrary and
arrival epoch probabilities. Several performance measures of interest,
such as mean number of customers in the queue (system), mean
number of customers served in a batch, loss probability and mean
waiting time in the queue (system), have been obtained.

For use in sequel, let eðrÞ, ejðrÞ and Ir denote, respectively, the
column vector of dimension r consisting of 1's, column vector of
dimension rwith 1 in the jth position and 0 elsewhere, and an identity
matrix of dimension r. When there is no need to emphasize the
dimension of these vectors we will suppress the suffix. Thus, e will
denote a column vector of 1's of appropriate dimension. The notation
‘T’ appearing in the superscript will stand for the transpose of a
matrix; the notation ‘0’ will stand for the derivative; and the symbols
� and � , respectively, will stand for the Kronecker product and
Kronecker sum of two matrices. Thus, if A is a matrix of order m� n
and if B is a matrix of order p� q, then A � B will denote a matrix of
order mp� nq whose i; jð Þth block matrix is given by aijB; the
Kronecker sum of two square matrices, say, G of order g and H of
order h, is given by G � Iþ I � H, a square matrix of dimension gh. For
more details on Kronecker products and sum, we refer the reader to
Marcus and Minc [45].

The paper is organized as follows. In Section 2, the description of
the model and its analysis at various epochs is given. Some key system
performancemeasures to bring out the qualitative nature of the model
are displayed in Section 3. The computational simplifications that arise
when the services are of phase type are spelled out in Section 4, and
an illustrative numerical example is discussed in Section 5. Some
concluding remarks are presented in Section 6.

2. Model description and analysis

We consider a single server queueing system in which the
customers arrive according to a MAP where the arrivals are governed
by an underlying m-state Markov chain with transition rate
cij;1r i; jrm, ia j, there is a transition from state i to state j in the
underlying Markov chain without an arrival, and with transition rate
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