G Model CATTOD-10346; No. of Pages 11

ARTICLE IN PRESS

Catalysis Today xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

TiO₂ polymorph dependent SMSI effect in Co-Ru/TiO₂ catalysts and its relevance to Fischer-Tropsch synthesis

Francine Bertella a,b, Patricia Concepción A, Agustín Martínez a,*

- ^a Instituto de Tecnología Química, Universitat Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
- ^b CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia-DF, Brazil

ARTICLE INFO

Article history: Received 15 May 2016 Received in revised form 18 July 2016 Accepted 2 August 2016 Available online xxx

Keywords: Fischer-Tropsch synthesis Cobalt catalyst TiO₂ polymorph Anatase Rutile SMSI effect

ABSTRACT

Pure anatase and rutile TiO_2 samples were synthesized by thermal treatment of reverse microemulsions and applied as supports for preparing Ru-promoted Co catalysts (0.5 wt% Ru, 10 wt% Co). The catalysts were characterized by ICP-OES, XRD, Raman spectroscopy, N_2 physisorption, H_2 -TPR, electron microscopy (FESEM, HAADF-STEM), H_2 chemisorption, XPS, and in situ IR-CO after H_2 reduction and reaction with syngas, and their catalytic performance for Fischer-Tropsch synthesis (FTS) studied at industrial conditions (220 °C, 2.0 MPa, H_2 /CO = 2). The two catalysts exhibited comparable mean Co particle sizes (5–6 nm) as well as high and alike degrees of cobalt reduction (ca. 90%). The SMSI decoration effect arising during H_2 reduction was much more pronounced for the anatase-supported catalyst resulting in lower cobalt-time-yield (CTY) compared to that supported on TiO_2 -rutile. In situ IR-CO under syngas conversion conditions showed equivalent cobalt surface reconstruction and nature of the surface Co^0 sites for both catalysts in their working state, and revealed a partial reversibility of the SMSI effect during FTS by which a significant fraction of the decorated Co^0 centers in the anatase-based catalyst was uncovered and became available for reaction. The implication of this effect on TOFs is discussed. The C_{5+} selectivity was higher for the rutile-based catalyst, although a clear impact of the SMSI effect on selectivities was not inferred from our results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fischer-Tropsch synthesis (FTS) is at the core of XTL processes allowing a variety of liquid fuels and chemicals to be produced from oil-alternative carbon resources such as natural gas (GTL), coal (CTL), and biomass (BTL) via syngas ($H_2 + CO$). Of particular interest is the Co-catalyzed low-temperature FTS in which syngas is selectively converted to long-chain n-paraffins (waxes) that are then hydrocracked to produce high-quality diesel [1,2].

Preparation of Co-based FTS catalysts commonly involves dispersion (via impregnation) of a cobalt salt precursor, most frequently cobalt nitrate, on a high surface area porous inorganic oxide carrier, among which SiO_2 , Al_2O_3 , and TiO_2 are the most widely employed, followed by drying, calcination, and H_2 -reduction to generate the active metallic Co sites on the catalyst surface [1]. Commonly, some metals (e.g. Ru, Re, Pt) and/or metal oxides are included in the catalyst formulation in order to promote the reduc-

catalytic performance of Co-based FTS catalysts becomes mainly dictated by the metal content, the dispersion (*i.e.* Co particle size), and the degree of Co reduction which ultimately determine the concentration of surface metal Co sites. These properties are affected by a number of factors such as the nature of the cobalt precursor and loading method [1], the chemical identity and porosity of the oxide carrier [1,5,6], and the so-called thermal history (*i.e.* the drying, calcination, and reduction conditions) [7].

tion and dispersion of the supported Co particles [3,4]. The final

As for the chemical nature of the support, TiO_2 has proven to be particularly beneficial from the standpoint of both catalyst activity and selectivity to the targeted liquid (C_{5+}) hydrocarbon fraction [6,8,9]. As a support, TiO_2 is known to exhibit the SMSI (strong-metal-support-interaction) decoration effect by virtue of which TiO_{2-x} sub-oxides form during H_2 reduction and migrate on top of the supported metal nanoparticles inhibiting their H_2 and CO chemisorption capability [10–14]. For CO/TiO_2 , partial encapsulation of CO nanoparticles by a few atomic layers of thick TiO_{2-x} phase during reduction was directly imaged by HRTEM [15]. In nature, TiO_2 exists in three distinct crystallographic forms, namely anatase, rutile, and brookite. Previous studies have shown that the

http://dx.doi.org/10.1016/j.cattod.2016.08.008 0920-5861/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Bertella, et al., TiO₂ polymorph dependent SMSI effect in Co-Ru/TiO₂ catalysts and its relevance to Fischer-Tropsch synthesis, Catal. Today (2016), http://dx.doi.org/10.1016/j.cattod.2016.08.008

^{*} Corresponding author.

E-mail address: amart@itq.upv.es (A. Martínez).

F. Bertella et al. / Catalysis Today xxx (2016) xxx-xxx

2

TiO₂ crystal phase composition is highly influential to the ultimate FTS performance of Co/TiO₂ catalysts, albeit with controversial results. For instance, by supporting 20 wt% Co on TiO2 with different anatase:rutile ratios, Jongsomjit et al. observed a maximum CO conversion rate under methanation conditions $(H_2/CO = 10)$ for the catalyst comprising 19% rutile and 81% anatase which also exhibited the highest H₂ chemisorption capacity [16]. This behavior was ascribed to a weaker interaction of Co with rutile in comparison to anatase that prevented the formation of barely reducible mixed Co-O-Ti compounds assisted by water generated during the H₂ reduction treatment thus increasing the amount of available surface Co⁰ atoms [17]. Other authors also reported higher CO conversion rates for Co/TiO₂ catalysts prepared from TiO₂ with more than 15% rutile in comparison to those based on pure anatase [18,19]. However, in contrast with the previous study, the effect was related to a stronger Co-support interaction in presence of rutile that inhibited the aggregation of Co particles during reduction improving the final Co⁰ dispersion, although the possibility of a suppressed SMSI effect over rutile was not excluded [18].

It is apparent from the previous discussion that further work is required to clarify the role of the ${\rm TiO_2}$ crystalline phase, with a special focus on the little studied phase-dependent SMSI effect, in determining the FTS performance of ${\rm Co/TiO_2}$ catalysts. To this aim, we synthesized 100% pure anatase and rutile ${\rm TiO_2}$ phases and used them as supports for preparing Ru-promoted ${\rm Co/TiO_2}$ catalysts (nominal loadings of 10 wt% Co and 0.5 wt% Ru). The prepared catalysts display alike mean ${\rm Co^0}$ particle sizes (5–6 nm) and particle size distributions as well as high and similar extents of cobalt reduction (ca. 90%), enabling a fair study of the ${\rm TiO_2}$ crystalline phase dependent SMSI effect and its consequences on the catalytic behavior for FTS under industrially relevant conditions (220 °C, 2.0 MPa, ${\rm H_2/CO}$ = 2).

2. Experimental

2.1. Materials

Triton X-100 [(tert-octylphenoxy)polyethoxyethanol] (Aldrich), titanium(IV) butoxide (99+%, Alfa Aesar), 1-hexanol (>98% GC, Fluka Chemika), cyclohexane (99%, Aldrich), hydrochloric acid (37%, Aldrich), and acetic acid (99,5%, Aldrich) were used as received.

2.2. Synthesis of pure anatase and rutile TiO₂ phases

Pure anatase and rutile TiO₂ phases were synthesized by thermal treatment of reverse microemulsions following a procedure similar to that reported in [20]. In short, an aqueous solution containing the acid (acetic acid for anatase and hydrochloric acid for rutile) and the Ti source (titanium(IV) butoxide) was added to an organic mixture containing the surfactant (Triton X-100), cosurfactant (1-hexanol), and solvent (cyclohexane) under stirring at room temperature (r.t.). The formed microemulsion was then either heated at 40 °C for 24 h under reflux (for rutile) or introduced into a Teflon-lined stainless steel autoclave and hydrothermally treated at 120 °C for 5 h (for anatase). After the thermal treatments the solids were recovered by centrifugation, washed 5 times in ethanol in a process involving redispersion and centrifugation, dried at 60°C overnight, and finally calcined in flowing air at 400°C for 8 h. The obtained TiO₂ anatase and rutile supports are labeled as Ti-A and Ti-R, respectively. The conditions and composition of the microemulsions employed for the syntheses of pure anatase and rutile phases are gathered in Table 1.

Table 1Nomenclature and conditions employed for the synthesis of pure TiO₂ anatase and rutile phases.

Support	Acid	Temperature	Time	$w = [H_2O]/[Triton]$	h = [H ₂ O]/[Ti]
		(°C)	(h)	(mol/mol)	(mol/mol)
Ti-A	CH ₃ COOH	120	5	19.4	33.8
Ti-R	HCl	40	24	15.0	18.8

2.3. Synthesis of Co-Ru/TiO₂ catalysts

Co-Ru/TiO₂ catalysts with nominal loadings of 10 wt% Co and 0.5 wt% Ru (added as reduction promoter) were prepared by incipient wetness co-impregnation of the calcined TiO₂ carriers with an aqueous solution of Co(NO₃)₂·6H₂O (Aldrich) and ruthenium(III) nitrosyl nitrate (Aldrich) as metal precursors, followed by drying at 100 °C overnight and calcination in flowing air at 300 °C for 3 h. The catalysts based on anatase and rutile are denoted as Co-Ru/Ti-A and Co-Ru/Ti-R, respectively.

2.4. Characterization techniques

X-ray powder diffraction (XRD) patterns were recorded on a Philips X'Pert diffractometer using monochromatic Cu K α radiation (λ = 0.15406 nm). The average TiO₂ crystallite size was estimated by the Scherrer's equation applied to the most intense reflections (1 1 0) for rutile (2θ = 27.44°) and (1 0 1) for anatase (2θ = 25.28°), assuming a shape factor k = 0.9.

Textural properties were derived from the N_2 adsorption isotherms measured at $-196\,^{\circ}\text{C}$ in an ASAP-2420 equipment (Micromeritics). Specific surface areas were calculated following the Brunauer–Emmett–Teller (BET) method, total pore volumes (TPV) were determined at a relative pressure of 0.98, and the pore size distributions were obtained by applying the Barrett–Joyner–Halenda (BJH) approach. Prior to the adsorption measurements, the samples were degassed at $300\,^{\circ}\text{C}$ and vacuum overnight.

The morphology of the samples were studied by field emission scanning electron microscopy (FESEM) using a ZEISS Ultra-55 microscope.

The Co and Ru contents were determined by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry) in a Varian 715-ES spectrometer after dissolution of the solids in an acid mixture of 20%HNO₃:20%HF:60%HCl (% volume).

The reduction behavior of the oxidized Co-Ru/TiO $_2$ catalysts was studied by hydrogen temperature-programmed reduction (H $_2$ -TPR) in a Micromeritics Autochem 2910 equipment. The samples were initially flushed with an Ar flow at r.t. for 30 min, and then the gas was switched to 10 vol% H $_2$ in Ar and the temperature linearly increased up to $900\,^{\circ}\text{C}$ at a heating rate of $10\,^{\circ}\text{C/min}$. A downstream 2-propanol/N $_2$ (liq) trap was used to retain the water generated during the reduction. The H $_2$ consumption rate was monitored in a thermal conductivity detector (TCD) previously calibrated using the reduction of a standard CuO sample. This setup was also used to measure the degree of cobalt reduction (DR) after submitting the catalysts to the same reduction protocol applied *in-reactor* prior to the FTS experiments ($400\,^{\circ}\text{C}$ in H $_2$ flow for $10\,\text{h}$).

Cobalt dispersions were determined by H_2 chemisorption at $100\,^{\circ}\text{C}$ in an ASAP 2010C Micromeritics equipment by extrapolating the total H_2 uptake to zero pressure [21]. Metal particle sizes $(d(\text{Co}^0)_{H2})$ were estimated from the total amount of chemisorbed H_2 , the Co content (from ICP-OES) and the degree of cobalt reduction by assuming a chemisorption stoichiometry H/Co=1 and a surface atomic density for Co^0 of $14.6\,\text{atoms/nm}^2$.

Cobalt particle sizes were studied by electron microscopy in a JEOL-JEM-2100F microscope operating at 200 kV in scanning-

Download English Version:

https://daneshyari.com/en/article/4757034

Download Persian Version:

https://daneshyari.com/article/4757034

Daneshyari.com