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a  b  s  t r  a  c  t

Various  Au-Pd/SiO2 catalysts  with  a  fixed  Au  loading  but  different  Au:Pd  molar  ratios  were  prepared  via
deposition-precipitation  method  followed  by H2 reduction.  The  structures  were  characterized  and  the
catalytic  activities  in CO  oxidation  were  evaluated.  The  formation  of  Au-Pd  alloy  particles  was  identified.
The  Au-Pd  alloy  particles  exhibit  enhanced  dispersions  on  SiO2 than  Au  particles.  Charge  transfer  from
Pd  to  Au  within  Au-Pd  alloy  particles.  Isolated  Pd  atoms  dominate  the  surface  of  Au-Pd  alloy  particles
with  large  Au:Pd  molar  ratios  while  contiguous  Pd  atoms  dominate  the  surface  of  Au-Pd  alloy  particles
with  small  Au:Pd  molar  ratios.  Few  synergetic  effect  of  Au-Pd  alloy  occurs  on  catalyzing  CO  oxidation
under  employed  reaction  conditions.  Alloying  Au  with  Pd reduces  the intrinsic  activity  in catalyzing  CO
oxidation,  and contiguous  Pd  atoms  on  the  Au-Pd  alloy particles  are  capable  of catalyzing  CO  oxidation
while  isolated  Pd  atoms  are  not. These  results  advance  the  fundamental  understandings  of  Au-Pd  alloy
surfaces  in  catalyzing  CO  oxidation.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Bimetallic catalysts usually exhibit superior catalytic perfor-
mances compared with monometallic components [1]. Gold(Au)-
palladium(Pd) bimetal catalysts are a representative system and
have shown the synergetic effect on catalyzing a variety of reac-
tions, especially in the direct synthesis of H2O2 [2,3], selective
oxidation of alcohols [4,5], C C coupling [6,7], and selective
hydrogenation of unsaturated hydrocarbon [8,9]. The catalytic per-
formances of these Au-Pd bimetallic catalysts were found not only
to depend on the Au-Pd particle sizes but also on the Au-Pd sur-
face structures [9–13]. For example, the dispersion of Pd atoms on
the Au surface strongly affects the catalytic performances of the
Au-Pd bimetallic catalysts. Single Pd atoms isolated by Au atoms
were reported to promote the catalytic performance in the selective
hydrogenation reaction [9] and C C coupling [6] while contiguous
Pd atoms surrounded by Au atoms were reported to benefit for
low-temperature CO oxidation [14].
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CO oxidation, a popular probe catalytic reaction, has been tested
for various Au-Pd bimetallic catalysts. The synergetic effect of Au-
Pd structures on low-temperature CO oxidation was proposed on
the basis of model catalyst study under ultra-high vacuum con-
dition [14] or density functional theory (DFT) calculation study
[13], but the results coming from supported Au-Pd powder cata-
lysts are controversial. CO adsorption on the Au-Pd bimetal surfaces
could drive a surface segregation of Pd [11,15–17], making the
surface structures of Au-Pd bimetal catalysts sensitively depend
on the reaction atmosphere; meanwhile, the supports seemed to
strongly affect the catalytic activity of supported Au-Pd catalysts
in low-temperature CO oxidation. Ye et al. [18] observed enhanced
catalytic activity of Au/SnO2 doped with Pd. The Han’s group [19]
reported that none of Au-Pd alloys supported on SiO2 exhibited
better catalytic activity than pure Au/SiO2. The Chandler’s group
reported that Au-Pd/TiO2 catalysts were catalytically more active
than Au/TiO2 while Au-Pd/Al2O3 catalysts were catalytically more
inactive than Au/Al2O3 [16].

In our previous studies, we have used inert SiO2 as the support
to successfully demonstrate the structure-intrinsic catalytic activ-
ity of Au particles in low-temperature CO oxidation because SiO2
does not directly participate in the catalytic reaction [20–26]. In
this paper we applied SiO2 as the support to synthesize a series of
Au-Pd/SiO2 catalysts with different Au-Pd ratios. The compositions
and structures of Au-Pd/SiO2 catalysts were characterized in detail
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Fig. 1. (A) XRD patterns and (B) the enlarged XRD patterns between 36 and 42◦ of Au/SiO2 (a), Au-Pd/SiO2-50 (b), Au-Pd/SiO2-20 (c), Au-Pd/SiO2-10 (d), Au-Pd/SiO2-5 (e),
Au-Pd/SiO2-2 (f), Au-Pd/SiO2-1 (g) and Pd/SiO2 (h).

and the distributions of Pd atoms on the Au-Pd alloy surfaces were
probed by CO adsorption. The catalytic activities of Au-Pd/SiO2
catalysts were also evaluated in CO oxidation. Strong interactions
between Au and Pd within the Au-Pd alloy particles were identified
but the formation of Au-Pd alloy particles were found to decreases
the intrinsic activity of Au surfaces in catalyzing CO oxidation under
employed reaction conditions.

2. Experimental section

A series of Au-Pd/SiO2 catalysts with different Au:Pd molar
ratios (denoted as Au-Pd/SiO2-x, where x is the Au:Pd molar ratio)
were prepared by the traditional deposition-precipitation (DP)
method employing HAuCl4·4H2O (Sinopharm Chemical Reagent
Co., Ltd., Au content ≥47.8%) and H2PdCl4 (Sinopharm Chemical
Reagent Co., Ltd., PdCl2:HCl molar ratio: 1:2) as the precursors
and inert SiO2 (40–120 mesh, Qingdao Haiyang Chemicals Co.) as
the support. Typically, calculated amounts of HAuCl4 and H2PdCl4
aqueous solution were co-added into a three-neck bottle contain-
ing the support and adequately stirred, and then ammonia water
was slowly added to adjust the pH between 9 and 10. The system
was adequately stirred at 60 ◦C for 24 h. Then the precipitate was
filtered and washed several times, and the resulting powder was
dried at 60 ◦C for 12 h followed by H2 reduction at 200 ◦C for 4 h.
For comparisons, pure Au/SiO2 with 2% weight ratio and Pd/SiO2
catalyst with the same Pd loading as that in Au-Pd/SiO2-1 were
prepared with the similar method, and PdO/SiO2 catalyst with the
same Pd loading as Pd/SiO2 was prepared by calcining the catalyst
precursor at 200 ◦C for 4 h.

Powder X-ray diffraction (XRD) patterns were acquired on a
Philips X’Pert PRO SUPER X-ray diffractometer with a Ni-filtered
Cu K� X-ray source operating at 40 kV and 50 mA.  High res-
olution X-ray photoelectron spectroscopy (XPS) measurements
were performed on an ESCALAB 250 high performance electron
spectrometer using a monochromatized Al K� excitation source
(h� = 1486.6 eV). The binding energies in the XPS spectra were
referenced to the Si 2p binding energy in SiO2 at 103.3 eV. Transmis-
sion electron microscopy (TEM) measurements were performed on
JEOL-2010 and JEOL-2100F high-resolution transmission electron
microscopes. The Au LIII-edge and Pd K-edge X-ray absorption near-
edge structure (XANES) spectra were measured in a transmission
mode with an energy step of 0.5 eV at the BL14W1 beamline of
Shanghai Synchrotron Radiation Facility (SSRF).

Operando diffuse reflectance infrared spectroscopy (DRIFTS)
measurements were performed on a Nicolet 6700 FTIR spectrome-
ter equipped with an in-situ DRIFTS reaction cell (Harrick Scientific
Products, INC) at RT. Prior to the measurements, 10 mg catalyst pre-
cursor was loaded onto the sample stage of the reaction cell and
reduced by H2 at 200 ◦C for 4 h, then purged with Ar (flow rate:
20 mL/min) and cooled down to RT to prepare the catalysts. Then
the gas stream consisting of 1% CO and 99% Ar was  admitted and the
DRIFT spectra were measured in the series mode with 64 scans and
a resolution of 4 cm−1 using a MCT/A detector. The DRIFTS spectrum
of the freshly-prepared catalyst purged with Ar at RT was taken as
the background spectrum.

The catalytic activity was  evaluated on a fixed-bed flow reactor.
Prior to the catalytic activity evaluation, 100 mg  catalyst precur-
sor in the catalytic reactor was  reduced by H2 at 200 ◦C for 4 h and
then cooled to RT in Ar (flow rate: 20 mL/min) to prepare the cat-
alysts. Then the reaction gas consisting of 1% CO and 99% dry air
was fed at a rate of 20 mL/min. The composition of the effluent gas
at the steady state was  analyzed with an online GC-14C gas chro-
matograph equipped with a TDX-01 column (T = 80 ◦C, H2 as the
carrier gas at 30 mL/min). The CO conversion was calculated from
the change in CO concentrations in the inlet and outlet gases.

3. Results and discussion

In our Au-Pd/SiO2 catalysts, the loading of Au in the catalysts
was fixed with a Au:SiO2 weight ratio of 2% and the Au:Pd molar
ratio varied between 50 and 1. Fig. 1A displays the XRD patterns
of Au/SiO2, Pd/SiO2 and various Au-Pd/SiO2 catalysts. Au/SiO2 dis-
plays clear diffraction patterns well indexed to Au while Pd/SiO2
exhibits no diffraction patterns. This suggests the formation of Au
particles but highly dispersive palladium species on SiO2 under
the employed catalyst preparation recipes. Similar to Au/SiO2, all
Au-Pd/SiO2 catalysts only show diffraction patterns arising from
Au; however, as shown in Fig. 1B, comparing that of Au/SiO2, the
Au (1 1 1) diffraction peak of Au-Pd/SiO2 catalysts shifts to higher
diffraction angles and broadens with the Pd loading. The standard
positions of Au (1 1 1) and Pd (1 1 1) diffraction peaks are respec-
tively located at 38.2 and 39.9◦ respectively corresponding to lattice
spacing of 2.36 and 2.25 Å. The (1 1 1) lattice spacing were calcu-
lated to be 2.36, 2.36, 2.35, 2.35, 2.34, 2.33 and 2.32 Å in Au/SiO2,
Au-Pd/SiO2-50, Au-Pd/SiO2-20, Au-Pd/SiO2-10, Au-Pd/SiO2-5, Au-
Pd/SiO2-2 and Au-Pd/SiO2-1, respectively. The decrease of the
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