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a b s t r a c t

In this paper, we consider the problem of determining a best compromise solution for the multi-
objective assignment problem. Such a solution minimizes a scalarizing function, such as the weighted
Tchebychev norm or reference point achievement functions. To solve this problem, we resort to a
ranking (or k-best) algorithmwhich enumerates feasible solutions according to an appropriate weighted
sum until a condition, ensuring that an optimal solution has been found, is met. The ranking algorithm is
based on a branch and bound scheme. We study how to implement efficiently this procedure by
considering different algorithmic variants within the procedure: choice of the weighted sum, branching
and bounding schemes. We present an experimental analysis that enables us to point out the best
variants, and we provide experimental results showing the remarkable efficiency of the procedure, even
for large size instances.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-objective combinatorial optimization deals with the optimi-
zation of multiple conflicting objective functions in a combinatorial
optimization problem. When several objective functions are taken into
account, there generally does not exist a unique optimal solution. The
concept of optimality is indeed based on the Pareto dominance that
induces a partial order on the solutions. The Pareto optimal, or efficient,
solutions are the feasible solutions such that one cannot improve the
performance of one objective without worsening at least another
objective. As they represent all possible compromises between the
objectives one can obtain, any rational decision maker (DM) would
thus prefer an efficient solution. Nevertheless when the number of
efficient solutions is large, selecting his/her most preferred solution
among all the efficient ones can be difficult for a DM. Scalarizing
functions are used to discriminate among the efficient solutions by
aggregating the objective functions according to the preferences of the
DM (see, e.g., [14,28]). An optimal solution according to such a
scalarizing function represents a best compromise with respect to the
DM's preferences. Unfortunately, the most relevant scalarizing func-
tions are generally nonlinear, which makes their optimization over
combinatorial domains hard. A best compromise solution could be
determined by first generating all the efficient solutions, and then
selecting an optimal solution among them with respect to the

scalarizing function to be optimized. Nevertheless the potentially huge
number of efficient solutions often makes the first step intractable
over combinatorial domains [5]. Therefore, it seems more relevant to
directly focus the search on a best compromise solution, without
generating a priori all the efficient solutions. In particular, when
resorting to an interactive exploration of the efficient solutions
[10,26], each iteration of such a procedure precisely consists in
generating an optimal solutionwith respect to a (nonlinear) scalarizing
function.

The problem of determining a best compromise solution to
a multi-objective combinatorial optimization problem has been
studied in the literature for several multi-objective combinatorial
problems (e.g., multi-objective path problem, multi-objective
spanning tree problem, etc.) and several scalarizing functions
(e.g., Euclidean distance [17], Max operator [7,12], Tchebychev
norm [8], Choquet integral [9], etc.). A ranking method is often
proposed in these works so as to determine a best compromise
solution. It is based on the enumeration of the solutions in non-
decreasing order of a linear aggregation of their objective func-
tions until a best compromise solution is proved to be already
enumerated. Depending on the aggregation function to be opti-
mized, some conditions on the linear aggregation function used to
enumerate the solutions are required to make the ranking method
valid. Moreover an efficient algorithm that enumerates the solu-
tions in non-decreasing order of their value (k-best algorithm) is
also required to make the ranking method efficient.

In this paper, we consider the problem of directly determining
a best compromise solution for the multi-objective assignment
problem. The assignment problem is a standard combinatorial
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optimization problem [2], modeling a variety of situations where
resources have to be assigned to tasks. In many contexts, several
conflicting objectives, reflecting for example the cost and various
measures of quality or performance of an assignment, are to be
taken into account. Several procedures have been proposed to
determine the set of all efficient solutions for multi-objective
assignment problem (see [20,22] for the bi-objective case and
[23] for the tri-objective case). However, to the best of our
knowledge, no procedure has been proposed specifically for the
problem of finding efficiently a best compromise assignment. This
is the purpose of this work, where the notion of compromise
among objectives is defined through a distance to a reference
point in the objective space with respect to a weighted norm, such
as the Tchebychev norm [1] or, more generally, using an achieve-
ment scalarizing function [27,28]. The problem is NP-hard since it
contains, as a special case, the min max regret assignment pro-
blem which is known to be NP-hard [13]. Following previous
works in the literature on other problems and aggregation func-
tions, we apply the ranking method to the problem of determining
a best compromise assignment. Several k-best algorithms have
been proposed in the literature for the single objective assignment
problem [3,15,16,18,19]. All these algorithms are based on a branch
and bound procedure. In this paper, we propose a branch and
bound procedure that implements the ranking method and we
investigate different algorithmic issues within our branch and
bound procedure: the choice of the linear aggregation function,
the branching scheme and the bounding phase. In particular, we
show that the choice of a relevant linear aggregation function, that
limits the number of solutions to be enumerated within the
ranking method, can be performed efficiently by solving a con-
tinuous linear program. Moreover, we point out the most con-
venient k-best algorithm, among the different algorithms of the
literature. Furthermore, we propose some pruning techniques,
that are specific to the assignment problem, and we study their
impact on the efficiency of the procedure. The experimental
analysis of all these algorithmic variants leads us to provide an
efficient procedure, that can handle very quickly small and
medium size instances, as well as large size instances.

In Section 2, the problem of determining a best compromise
assignment and the basic definitions are presented. The generic
ranking method, that does not depend on the problem, is pre-
sented in Section 3. Our branch and bound procedure that
implements the ranking method for best compromise search in
multi-objective assignment problem is proposed in Section 4.
Experimental analysis of our procedure is performed in Section 5.
Section 6 concludes this work.

2. Basic definitions and concepts

2.1. Multi-objective assignment problem

The multi-objective assignment problem can be formulated as
follows:

min zkðxÞ ¼ ∑
n

i ¼ 1
∑
n

j ¼ 1
ckijxij; k¼ 1;…; p

s:t: ∑
n

j ¼ 1
xij ¼ 1; i¼ 1;…;n

∑
n

i ¼ 1
xij ¼ 1; j¼ 1;…;n

xijAf0;1g; i¼ 1;…;n; j¼ 1;…;n ðMOAPÞ

where n is the number of tasks (and agents), p is the number of
objectives, and cij

k is the non-negative cost of assigning task i to
agent j with respect to objective k. Decision variable xij equals 1 if

task i is assigned to agent j and 0 otherwise. The multi-objective
assignment problem can also be stated as a multi-objective perfect
matching problem on a complete bipartite graph G¼ ðU [ V ; EÞ
with jUj ¼ jV j ¼ n such that any edge ði; jÞAE links a vertex i in U to
a vertex j in V with cost ckij for any objective k. A perfect matching

in G is equivalent to an assignment in (MOAP). Let X � f0;1gn2

denote the set of feasible solutions to Problem (MOAP). To any
solution xAX is associated a set E(x) of n edges such that an edge
ði; jÞAE of bipartite graph G is in E(x) if and only if xij ¼ 1. A solution
is therefore equivalently characterized by x or by E(x). Finally, to
any solution xAX is associated a criterion vector zðxÞ ¼ ðz1ðxÞ;
…; zpðxÞÞ which corresponds to its image in the objective space.
The image set in the objective space of all the feasible solutions is
denoted by Z ¼ fzðxÞ : xAXg.

2.2. Non dominance and efficiency

Due to the conflicting nature of the different objectives, there is
generally no feasible solution that minimizes simultaneously all
the objectives. The concept of optimality is therefore based on the
Pareto dominance relation on points in Rp which induces a partial
order on solutions of X. A point zARp dominates another point
z0ARp if zkrz0k for all k in f1;…; pg and zaz0. A point zARp strictly
dominates another point z0ARp if zkoz0k for all k in f1;…; pg. A
point z in Z is (weakly) non-dominated if there is no other point z0

in Z such that z0 (strictly) dominates z. Let ZN (resp. ZWN) denote
the set of non-dominated (resp. weakly non-dominated) points.
Among the points in ZN, those which lie on convðZÞþR

p
Z (where

conv(Z) is the convex hull of Z) or, equivalently, which minimize,
for at least one strictly positive weighting vector, a weighted sum
of the objectives, are called supported. These notions can be
transposed directly in the decision space and lead to the corre-
sponding concepts of weakly efficient, efficient and supported
solutions.

2.3. Determination of best compromise solutions

In order to determine a solution which achieves the best
possible compromise among the objectives according to the
preferences of a specific decision maker (DM), it is necessary to
resort to a scalarizing function f γ which aggregates these objec-
tives taking into account the DM's preferences formalized through
a parameter γ. The corresponding best compromise solution is
then obtained by solving the following problem:

min
xAX

f γðz1ðxÞ;…; zpðxÞÞ ðCγÞ

The choice of a scalarizing function should be made consider-
ing the following requirements (see [6,28]):

� R1: Any optimal solution of ðCγÞ corresponds to a non-
dominated point,

� R2: Any non-dominated point can be reached by solving ðCγÞ,� R3: Solving ðCγÞ is reasonably easy.

More precisely requirement R1 imposes that solving Problem
(Cγ), for any parameter γ, returns an efficient solution. Require-
ment R2 imposes that, for any non-dominated point, there exists
at least one parameter γ such that Problem (Cγ) returns, preferably
as a unique optimal solution, a solution corresponding to this
point. Finally, for any combinatorial optimization problem like the
assignment problem, requirement R3 can be interpreted as ‘solving
(Cγ) should ideally have the same complexity as solving the
corresponding single objective problem’, which means in our case
that Problem (Cγ) should be a polynomial problem.
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