G Model CATTOD-10272; No. of Pages 5

ARTICLE IN PRESS

Catalysis Today xxx (2016) xxx-xxx

EISEVIED

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Acceptorless dehydrogenation of *N*-heterocycles by supported Pt catalysts

Sondomoyee K. Moromi^a, S.M.A. H. Siddiki^b, Kenichi Kon^{a,b}, Takashi Toyao^{a,b}, Ken-ichi Shimizu^{a,b,*}

- ^a Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001 -0021, Japan
- ^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

ARTICLE INFO

Article history:
Received 12 January 2016
Received in revised form 2 June 2016
Accepted 10 June 2016
Available online xxx

Keywords: Pt nanoparticles Dehydrogenation N-heterocycles Hydrogen storage

ABSTRACT

Pt metal nanoparticles loaded on various supports and carbon-supported various metal catalysts are tested for dehydrogenation of 6-methyl-1,2,3,4- tetrahydroquinoline to 6-methyl-quinoline under oxidant-free conditions. In the 20 types of the catalysts screened, carbon-supported Pt catalyst (Pt/C) shows the highest activity. Pt/C is reusable after the reaction and is effective for dehydrogenation of various *N*- heterocycles (tetrahydroquinolines and indoline). Pt/C is also effective for hydrogenation of quinoline under 3 bar H₂. The results demonstrate that this catalytic method may be useful for an organic hidride–based hydrogen storage system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Catalytic dehydrogenation [1–9] and oxidation [10–21] of saturated N-heterocycles are of fundamental importance in the synthesis of nitrogen-containing aromatics. Previous methods [10–21] are based on the catalytic oxidation of N-heterocycles using an external oxidant such as O₂ and stoichiometric oxidants, but use of the oxidant potentially limits selectivity and functional group tolerance. An alternative method is the catalytic dehydrogenation of N-heterocycles in the absence of oxidants [1-9]. Recently reported homogeneous catalytic methods with Ir [4,5,7], Ru [8], Co [6] and Fe [9] catalysts were effective for the reaction, but most of these methods have drawbacks such as low turnover number (TON) and difficulties in catalyst/product separation and reuse of the homogeneous catalyst [5–9]. A few reports showed acceptorless dehydrogenation of N-heterocycles with heterogeneous catalysts [1-3]. For example, Kaneda et al. developed Pd [1] and Cu catalysts [2] for dehydrogenation of indolines and tetrahydroquinoline, respectively. For a model dehydrogenation of 1,2,3,4-tetrahydroquinoline, the previous homogeneous [4,7,8,6,9] and heterogeneous [2,3] catalysts showed limited TON in a range of 3.3-87. Among these examples, a few studies have suc-

E-mail address: kshimizu@cat.hokudai.ac.jp (K.-i. Shimizu).

http://dx.doi.org/10.1016/j.cattod.2016.06.027 0920-5861/© 2016 Elsevier B.V. All rights reserved. ceeded in the reversible dehydrogenation-hydrogenation reactions of N-heterocycles with a single catalyst [2,4–6,9]. This reversible transformation is of particular importance from a viewpoint of organic hydrides for hydrogen storage system. As a part of our continuous studies in heterogeneous catalysis for oxidant-free dehydrogenation reactions [22], we report herein dehydrogenation of saturated N-heterocycles by a Pt/C catalyst, which shows higher TON for dehydrogenation of tetrahydroquinoline than previous catalytic systems. Additionally, Pt/C is effective for the reverse reaction, that is hydrogenation of quinoline into tetrahydroquinoline under 3 bar H_2 .

2. Experimental

2.1. Catalyst preparation

Commercially available organic and inorganic compounds (Tokyo Chemical Industry, Kanto Chemical) were used without further purification. The standard carbon support, Vulcan XC72 (210 $\rm m^2~g^{-1}$), was commercially supplied. $\gamma\text{-Al}_2O_3$ (124 $\rm m^2~g^{-1}$) was prepared by calcination of $\gamma\text{-AlOOH}$ (Catapal B Alumina from Sasol) at 900 °C for 3 h, SiO $_2$ (Q-10, 300 $\rm m^2~g^{-1}$) was supplied from Fuji Silysia Chemical Ltd. TiO $_2$ (JRC-TIO-4, 50 $\rm m^2~g^{-1}$), MgO (JRC-MGO-3, $19~\rm m^2~g^{-1}$), SiO $_2$ - Al $_2O_3$ (JRC-SAL-2, Al $_2O_3$ =13.75 wt%, $560~\rm m^2~g^{-1}$) and HBEA zeolite (SiO $_2/\rm Al}_2O_3$ =25 \pm 5, JRC-Z-HB25) were supplied from Catalysis Society of Japan. Nb $_2O_5$ (54 $\rm m^2~g^{-1}$), ZrO $_2$ and SnO $_2$ were prepared by calcination of Nb $_2O_5$ nH $_2O_5$

^{*} Corresponding author at: Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.

S.K. Moromi et al. / Catalysis Today xxx (2016) xxx-xxx

(CBMM), $ZrO_2 \cdot nH_2O$ and H_2SnO_3 (Kojundo Chemical Laboratory Co., Ltd.), respectively, at 500 °C for 3 h.

A precursor of the 5 wt% Pt/C catalyst was prepared by impregnation method; a mixture of carbon (Vulcan XC72) and aqueous HNO₃ solution of Pt(NH₃) ₂(NO₃)₂ (Furuya Metal Co., Ltd.) was evaporated at 50°C, followed by drying at 90°C for 12 h. The reduced Pt/C catalyst, designated as Pt/C, was prepared by reduction of the precursor (Pt (NH₃)₂(NO₃)₂-loaded carbon) in a pyrex tube under H_2 flow (20 cm³ min⁻¹) at 300 °C for 0.5 h. The other Pt catalysts were prepared by the same method as Pt/C. Carbonsupported metal catalysts, designated as M/C (M=Rh, Pd, Ir, Ru, Ni, Cu, Co, Ag), with metal loading of 5 wt% were prepared by impregnation method by the similar manner as Pt/C using aqueous solution of metal nitrates (for Ni, Cu, Co, Ag) or IrCl₃·nH₂O or aqueous HNO₃ solution of Rh(NO₃)₃ (Furuya Metal Co., Ltd.) or Pd (NH₃)₂(NO₃)₂ (Kojima Chemicals Co., Ltd.). These catalysts were reduced under H₂ flow at 300 °C for 0.5 h. Platinum oxides-loaded carbon (PtOx/C) was prepared by calcination of the $Pt(NH_3)_2(NO_3)_2$ -loaded C in air at 300 °C for 0.5 h.

2.2. Catalyst characterization

Temperature programmed reduction by H_2 (H_2 -TPR) was carried out by BELCAT (MicrotracBEL). PtOx/C (20 mg) in a quartz tube was heated with a temperature ramp-rate of $10\,^{\circ}\text{C}$ min $^{-1}$ in a flow of 5% H_2/Ar ($20\,\text{cm}^3$ min $^{-1}$). The effluent gas was passed through a trap containing MS4Å to remove water, then through the thermal conductivity detector, which detected the amount of H_2 consumed during the experiment. The number of surface Pt^0 atoms on Pt/C, pre- reduced in H_2 at $300\,^{\circ}\text{C}$ for 0.5 h, was estimated from the CO uptake of the samples at room temperature using the pulse-adsorption of CO in a flow of He by BELCAT (MicrotracBEL). The average Pt particle size was calculated from the CO uptake assuming that CO was adsorbed on the surface of spherical Pt particles at a stoichiometry of CO/(surface Pt atom) = 1/1. Transmission electron microscopy (TEM) observation of Pt/C was carried out by a JEOL IEM-2100 F TEM operated at 200 kV.

2.3. Catalytic tests

Typically, 5 wt% Pt/C was used as the standard catalyst. After the H₂-reduction of the catalyst at 300 °C, catalytic tests were carried out using a batch-type reactor without exposing the catalyst to air as follows. A mixture of 6-methyl 1,2,3,4-tetrahydroquinoline $(1.0 \,\mathrm{mmol})$ and n-dodecane $(0.29 \,\mathrm{mmol})$ in o-xylene $(1.5 \,\mathrm{mL})$ was injected to the pre-reduced catalyst inside the reactor (cylindrical glass tube) through a septum inlet, followed by filling N2. Then, the resulting mixture in a 15 mL of closed reflux system under 1 atm N₂ was magnetically stirred and was heated to reflux temperature; the bath temperature was 160°C and reaction temperature was ca. 144 °C. The yield of 6-methyl-quinoline was determined by GC (Shimadzu GC-14B with Ultra ALLOY capillary column UA+-1 of Frontier Laboratories Ltd., N2) using n-dodecane as an internal standard. Typically, the error in the yield determined by GC was ± 1.5 %. To determine the isolated yield of 6-methyl-quinoline, 6methyl-quinoline was isolated by column chromatography using silica gel 60 (spherical, 63-210 µm, Kanto Chemical Co. Ltd.) with hexane/ethylacetate (90/10) as the eluting solvent, followed by analyses by GC-MS and ¹H and ¹³C NMR. The hydrogenation of quinoline was carried out by a stainless autoclave (28 cm³) at 160 °C under 3 bar H₂.

2.4. NMR and GC-MS analysis

¹H and ¹³C NMR spectra were recorded at ambient temperature by JEOL-ECX 600 operating at 600.17 and 150.92 MHz, respectively with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.00 ppm, chloroform), respectively. Abbreviations used in the NMR experiments: s, singlet d, doublet; t, triplet; m, multiplet. GC–MS spectra were recorded by SHIMADZU QP2010.

2.4.1. 6-Methyl-quinoline (Table 3, entry 1) [18]

 1 H NMR (600.17 MHz, CDCl₃), TMS: δ 8.51 (d, J = 2.70 Hz, 1H), 7.73 (d, J = 8.94 Hz, 1H), 7.54 (d, J = 7.56 Hz, 1H), 7.12 (d, J = 8.22 Hz, 1H), 7.05 (s, 1H), 6.98-6.87 (m, 1H), 2.09 (s, 3H); 13 C NMR (150.91 MHz, CDCl₃) δ 148.63, 146.11, 135.36, 134.39, 130.82, 128.27, 127.44, 125.79, 120.17, 20.66; MS m/e 143.07.

2.4.2. Quinoline (Table 3, entry 2) [16]

¹H NMR (600.17 MHz, CDCl₃), TMS: δ 8.89 (d, J= 2.76 Hz, 1H), 8.12-8.07 (m, 2H), 7.76 (d, J= 8.22 Hz, 1H), 7.68 (t, J= 7.56 Hz, 1H), 7.50 (t, J= 7.56 Hz, 1H), 7.33-7.32 (m, 1H); ¹³C NMR (150.91 MHz, CDCl₃) δ 150.15, 148.02, 135.81, 129.22, 129.19, 128.03, 127.57, 126.30, 120.83; MS m/e 129.04.

2.4.3. 2-Methyl-quinoline (Table 3, entry 3) [23]

¹H NMR (600.17 MHz, CDCl₃), TMS: δ 8.03 (d, J= 8.28 Hz, 1H), 7.80 (d, J= 8.28 Hz, 1H), 7.59 (d, J= 7.56 Hz, 2H), 7.34 (t, J= 6.90 Hz, 1H), 7.05 (t, J= 6.18 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (150.91 MHz, CDCl₃) δ 158.13, 147.18, 135.35, 128.68, 127.95, 126.82, 125.77, 124.93, 121.22, 24.65; MS m/e 143.07.

2.4.4. Indole (Table 3, entry 4) [14]

¹H NMR (600.17 MHz, CDCl₃), TMS: δ 8.09 (s, NH, 1H), 7.65 (d, J = 8.28 Hz, 1H), 7.38 (d, J = 8.28 Hz, 1H), 7.19 (m, 2H), 7.12 (t, J = 7.20 Hz, 1H), 6.55 (s, 1H); ¹³C NMR (150.91 MHz, CDCl₃) δ 135.74, 127.82, 124.10, 121.96, 120.71, 119.79, 111.00, 102.60; MS m/e 117.10.

3. Result and discussion

3.1. Catalyst characterization

Fig. 1 shows temperature programmed H₂-reduction (H₂-TPR) profile of $Pt(NH_3)_2(NO_3)_2$ - loaded carbon as the precursor of Pt/C. The H₂-TPR profile shows H₂ consumption peaks below 250 °C assignable to the reduction of Pt(II) to metallic Pt. This indicates that the standard Pt/C catalyst pre-reduced at 300 °C contains metallic Pt. Fig. 2 shows a representative TEM image and Pt size distribution of Pt/C. The average diameter of Pt particles for 98 particles was 2.9 ± 0.8 nm, and the volume-area mean diameter of Pt particles was 3.5 ± 0.8 nm. The volume-area mean diameter (TEM analysis) was consistent with the mean diameter estimated by the CO adsorption experiment (3.2 nm) within the experimental error of TEM analysis, which supprted the TEM reults. Summarizing the above characterization results, we conclude that Pt species in the standard Pt/C catalyst are present as 3.5 nm sized Pt metal nanoparticles.

Download English Version:

https://daneshyari.com/en/article/4757156

Download Persian Version:

https://daneshyari.com/article/4757156

<u>Daneshyari.com</u>