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a b s t r a c t

This paper considers a discrete-time retrial queue with impatient customers. We establish the global
balance equations of the Markov chain describing the system evolution and prove that this queueing
system is stable as long as the customers are strict impatient and the mean retrial time is finite. Direct
truncation with matrix decomposition is used to approximate the steady-state distribution of the system
state and hence derive a set of performance measures. The proposed matrix decomposition scheme is
presented in a general form which is applicable to any finite Markov chain of the GI/M/1-type.
It represents a generalization of the Gaver–Jacobs–Latouche0s algorithm that deals with QBD process.
Different sets of numerical results are presented to test the efficiency of this technique compared to the
generalized truncation one. Moreover, an emphasis is put on the effect of impatience on the main
performance measures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the classical queueing theory [1,2], a customer arriving at a
full system departs immediately from the system and has no
further influence on it. In many applications (such as establishing a
telephone call between two consumers or starting a communica-
tion between two nodes in a network), those blocked customers
will return back after some random time to retry getting the
required service. Following the standard terminology, such custo-
mers are assumed to join a hypothetical place called “orbit” from
which a stream of retrials arrives at the system besides the original
stream of customers. Tackling such phenomenon and analyzing its
effect on the performance of queueing systems is the issue of the
theory of retrial queues. The mathematical aspects of this theory
are explained in [3] while computational procedures are described
in [4]. A number of survey papers appeared monitoring the work
done in retrial queues (e.g., [5–7]).

Research in the area of retrial queues focused mainly on the
continuous-time setting. However, communication systems such
as (Asynchronous Transfer Mode) ATM-based systems work in
slotted-time setting where time axis is divided into slots and
events may occur only at the boundaries of these slots [8,9].

Yang and Li [10] gave the first attention to discrete-time retrial
queues. They analyzed a Geo/G/1 retrial queue with geometric retrial
times and were able to derive the generating function of the

distribution of number of customers in the system, develop recursive
formulas for extracting such distribution and prove that the
continuous-time M/G/1 retrial queue can be approximated by a
discrete-time Geo/G/1 retrial queue.

Different papers appeared applying a similar methodology to
analyze different queueing features such as batch arrivals [11],
general retrial times [12–14], server breakdowns [13,15,16], multi-
plicative retrial policy [17], negative customers [18], DBMAP
arrivals [19] and customer collision with preemptive resume
[20]. The numerical inversion and the maximum entropy techni-
ques were employed to improve the numerical computations in
[21]. Simulation was used to analyze the multiple servers case
with a finite customer population [22]. An algorithmic treatment
of a Geo/Geo/c retrial queue was presented in [23]. A study directed
to investigate the distributions of successful and blocked retrials/
external arrivals during a busy period appeared in [24]. The reader
is referred to the reference list of these papers for related work.

All these models assume that customers are persistent. They
continue retrying until the required service is obtained. In many
applications (such as call centers and communications systems),
some customers may choose to leave the orbit (i.e., stop retrying)
after a number of unsuccessful retrials and return back to the
infinite population; perhaps to initiate a new arrival later on.
In this case customers are impatient. The special case of balking
customers was analyzed in [25–28]. A simulation-based analysis
that considers the general impatience case appeared in [29].

The first main issue of the present work is to extend the theory
of discrete-time retrial queues to include the impatient customers
case and to solve the added analysis complexity due to impatience.
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As noted in [23], the retrial phenomenon causes a spatial hetero-
geneity in the underlying process which complicates the analysis of
retrial queues. Analyzing discrete-time retrial queues has an added
complication. In continuous-time setting, the occurrence of multiple
events at the same time epoch has a zero probability. In discrete-time
setting, this event has a positive probability. Hence, analyzing such
systems is a challenging problem. These complications increase
when customers are impatient. In the persistent customers case
(with a single arrival stream), system transitions are of the birth-
death type in the sense that the number of customers in the orbit
increases or decreases by at most one during any time slot. When
customers are impatient, multiple departures from the orbit may
occur during a single time slot and hence the system evolution is no
longer birth-death (although it may still be Markovian).

The second main issue of the present work is to generalize the
Gaver–Jacobs–Latouche0s algorithm [30]. Such algorithm is a varia-
tion of block-Gaussian elimination which is applicable to finite QBD
(Quasi-Birth-and-Death) processes. Here, we extend the applicability
of this algorithm to the finite Markov chains of the GI/M/1-type.

We consider a Geo/PH/1 retrial queue with impatient customers
and geometric retrial times. We establish the global balance equa-
tions of the Markov chain describing the system evolution and prove
its stability condition. It is shown that the system with strict (really)
impatient customers is stable as long as the mean retrial time is
finite. Direct truncation approach [3,4] is used to build up an
algorithmic approximation of the steady-state distribution of this
Markov chain and hence derive a set of performance measures. The
special structure of the transition probability matrix is utilized to
construct an efficient matrix decomposition scheme which is in fact
applicable to any finite Markov chain of the GI/M/1-type. This scheme
is discussed in both pure algebraic and probabilistic perspectives.
A numerical study is presented to compare the efficiency of this
technique with the generalized truncation technique and to investi-
gate the effect of impatience on the system performance.

As far as we know, the present work is the first one to consider
level-dependent Markov chains of the GI/M/1-type. Recently,
a couple of papers appear treating the level-dependent QBD pro-
cesses. For example, in [31] the authors consider an infinite level-
dependent QBD process where not only the transition probabilities
changes between levels but also the number of states increases as
the level number increases. Moreover, this model is heavy-tailed
in the sense that a great part of the probability mass function is
distributed far away from the lower levels. In [32], the authors
consider an infinite level-dependent QBD process where sums of
Kronecker products are used to represent the non-zero blocks of
the transition rate matrix. An analysis and an extensive numerical
study are undertaken to arrive at an optimal memory usage. We
hope that the present work opens the door for analyzing more-
involved level-dependent Markov chains of the GI/M/1-type as
done for the level-dependent QBD processes.

The rest of this paper is organized as follows. In Section 2, we give a
detailed description of the queueing system under investigation and
introduce some notations that will be used throughout this work. In
Section 3, we present the global balance equations of the two-
dimensional Markov chain describing the evolution of our queueing
system and investigate its stability condition. Section 4 describes the
details of the direct truncation techniquewhere Section 5 is devoted to
the generalized truncation technique. Numerical results are presented
in Section 6. We conclude this work in Section 7.

2. System description

We consider a discrete-time retrial queue with impatient custo-
mers. In discrete-time setting, it is assumed that the time axis is
divided into slots. Systems events occur only at the boundaries of

these slots. Since multiple events may occur at the same time epoch,
some order of occurrence must be imposed for the system state to be
completely identified at any time epoch. Throughout this work, it is
assumed that the system evolution is controlled by the early arrival
scheme which is also known as the departure first rule [9]. According
to this scheme, departures are assumed to take precedence over
arrivals. More specifically, at the time epoch m, it is assumed that
potential arrivals (from outside and from the orbit) occur in the
interval ðm;mþ Þ whereas potential departure takes place in the
interval ðm� ;mÞ. As will be explained shortly, this scheme is
extended here to allow for abandonments (see Fig. 1).

Customers arrive according to a geometrical arrival process. At the
beginning of each time slot, a customer arrives at the system with
probability p. Hence, time between arrivals (inter-arrival time) has a
geometric distribution with parameter p. If the server is idle upon his
arrival, the customer proceeds immediately to get the required service.
Service time has a phase-type (PH) distribution [33] with H phases
and representation ν and T where ν is an initial probability sub-vector
of length H and T is a substochastic matrix for the transient states
f1;2;…;Hg. We assume that I�T is non-singular which means that
absorbing into state 0 is certain. Following standard notations [33], the
column vector t of length H is defined as t ¼ e�Te which represents
the absorbing probability into state 0 from any state i;1r irH;where
e is used to denote a unit column vector of an appropriate length. The
mean service time 1=μ is given by νðI�TÞ�1e.

A customer arriving at a busy server joins the orbit with probability
α or departs immediately without being served with the complemen-
tary probability 1�α. Customers in the orbit (orbiting customers)
make retrials independently of each other. During any time slot, an
orbiting customer makes a retrial with probability 1�r. Hence, time
between retrials (retrial time) is geometrically distributed with para-
meter 1�r. Upon making a retrial, if the customer finds the server
busy, he chooses between joining the orbit again (with probability α)
and departing from the systemwithout being served (with probability
1�α). We assume that an arriving customer has access to the server
before returning customers. Moreover, if more than one customer
make retrials during the same time slot and the server is idle, one of
them is selected at random and is allowed for service while the other
customers see the server busy. The order of different events is shown
in Fig. 1.

Inter-arrival times, service times and retrial times are mutually
independent. We use the notation x to denote 1�x, e. g., p ¼ 1�p,
r ¼ 1�r, α ¼ 1�α. It is assumed that 0opr1, 0rro1 and
0oαr1. When αo1, we say that customers are strict (really)
impatient.

3. Mathematical model

The system state at the time epoch mþ ;mZ0, is given by
Xm ¼ ðVm;NmÞ where Vm is the server state (0 if the server is idle or

mm− m+
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Arrivals Retrials

Abandonments

Fig. 1. Early arrival scheme with abandonments.
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