
Exact and parallel metaheuristic algorithms for the single
processor total weighted completion time scheduling problem with
the sum-of-processing-time based models

Radosław Rudek n

Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland

a r t i c l e i n f o

Available online 24 January 2014

Keywords:
Scheduling
Learning
Deteriorating
Aging
Dynamic programming
Parallel algorithm

a b s t r a c t

In this paper, the single processor scheduling problem to minimize the total weighted completion times
is analysed, where the processing times of jobs are described by functions dependent on the sum of the
normal processing times of previously processed jobs, which can model learning or aging (deteriorating)
effects. We construct the exact pseudopolynomial time algorithm based on the dynamic programming,
which solves the problem, where the processing time of each job is described by an arbitrary stepwise
function. Moreover, the parallel metaheuristic algorithms are provided for the general version of the
problem with arbitrary sum-of-processing time based models. The efficiency of the proposed algorithms
is evaluated during numerical analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of the learning effect in computers or manufac-
turing systems has usually a positive impact on their perfor-
mances. For instance, machine learning [6,25,31], intelligent
agents [6,23], advanced algorithms [1], iterative learning control
methods [2,5] or human workers [16,37,42] can adapt to occurring
changes and (often autonomously) increase their efficiency, which
can decrease time or cost of processed jobs. Moreover, in such
cases the optimization objectives can be further controlled by the
sequence of processed jobs, which in fact utilizes learning abilities
(see [3,7]. Since this approach does not require changes in a
structure of an optimized system and due to the growing meaning
of autonomous learning, it is not surprising that this direction of
research has attracted particular attention during last few years,
especially in scheduling theory (e.g., [4,9,17,22,39]).

In the scheduling context, the learning effect is modelled by job
processing times described by non-increasing functions depen-
dent on the experience of the processor. This experience is usually
equivalent to the number of previously processed jobs (position
based/dependent learning models, e.g., [3,7,43]) or to the sum of the
normal processing times of previously processed jobs (sum-of-
processing time based learning models, e.g., [8,18,20,33,34,38]),
where the normal processing time of a job is defined as the time
required to process a job if no learning exists. The discussion on
differences between these two approaches is presented in [4].

On the other hand, the efficiency of a processor (e.g., a human
worker, CNC machine, tool, chemical cleaning bath) can also
decrease with the processed jobs (see [24,29,10]). This phenomenon
in scheduling theory is called deteriorating or the aging effect and in
particular it can be modelled by job processing times described by
non-decreasing functions dependent on the sum of the normal
processing times of already processed jobs (e.g., [11,19,35]).

In this paper, we will analyse the single processor scheduling
problem to minimize the total weighted completion times, where
the processing time of each job is described by a function
dependent on the sum of the normal processing times of pre-
viously processed jobs, which can be non-increasing (learning) or
non-decreasing (deteriorating). Since a survey on this group of
problems with the learning effect was provided in [26], whereas
different sum-of-processing-time based models were discussed in
[32] (learning) and [27] (deteriorating), we will only briefly
complement it by results related with deteriorating models.

Namely, Sun [30] analysed the single-processor total weighted
completion time minimization problem, where the processing
time of job j that is scheduled in the vth position in a sequence
was given by ~pjðvÞ ¼ pjð1þ∑v�1

l ¼ 1p½l�Þavb, where pj is the normal
processing time of job j, ½l� denotes the index of the lth job in a
sequence, aZ1 and bo0 are deteriorating and learning indices,
respectively. It was proved that the Shortest Processing Time (SPT)
rule solves optimally the special case of the analysed problem.
Later on, it was shown (see [13]) that the same rule is optimal for a
special case of the considered problem with the following model:
~pjðvÞ ¼ pjð1þ∑v�1

l ¼ 1p½l�Þab
v�1, where a41 and 0obr1 are dete-

riorating and learning indices, respectively. In [19], a more general

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2014.01.008

n Tel.: þ48 71 368 0378; fax.: þ48 71 368 0376.
E-mail addresses: rudek.radoslaw@gmail.com, radoslaw.rudek@ue.wroc.pl

Computers & Operations Research 46 (2014) 91–101

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.01.008
http://dx.doi.org/10.1016/j.cor.2014.01.008
http://dx.doi.org/10.1016/j.cor.2014.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.01.008&domain=pdf
mailto:rudek.radoslaw@gmail.com
mailto:radoslaw.rudek@ue.wroc.pl
http://dx.doi.org/10.1016/j.cor.2014.01.008
http://dx.doi.org/10.1016/j.cor.2014.01.008


problem was analysed with job processing times defined as
~pjðvÞ ¼ pjhð∑v�1

l ¼ 1p½l�; vÞ, where h : ½0;MÞ �N-½1;1Þ is a differenti-
able non-decreasing function with respect to each variable (dete-
riorating), ð∂=∂xÞhðx; y0Þ is non-decreasing with respect to x for
every fixed y0. Moreover, it was assumed that ð∂=∂xÞhðBþx; y0Þ
ZhðBþx; yÞ=x for each x and y in domain and 0rBrM. It was
proved that a special case of this problem can be solved by the
Weighted Shortest Processing Times (WSPT) rule. Another general
model was presented in [21], i.e., ~pjðvÞ ¼ pjh

0ð∑v�1
l ¼ 1βlp½l�; vÞ, where

β1;…;βn is a sequence of numbers such that 0rβ1rβ2r⋯rβn

and h0 : ½0;1Þ � ½1;1�-ð0;1Þ is a differentiable non-decreasing
function with respect to the first variable x (deteriorating), non-
increasing with respect to the second variable y (learning),
whereas ð∂=∂xÞh0ðx; y0Þ is non-decreasing with respect to x for
every fixed y0 and h0ð0;1Þ ¼ 1. The WSPT rule was still optimal for
some special cases of the analysed problem with this model.

It can be observed that the results presented in the scientific
literature concerning the single processor total weighted completion
time scheduling problem with the sum-of-processing time based
models mostly focus on polynomially solvable special cases or the
worst case analysis of heuristic algorithms (e.g., [34]). Nevertheless, in
[26], the NP-hardness was proved for the discussed problemwith non-
increasing step functions describing job processing times (learning) as
well as an exact pseudopolynomial dynamic programming algorithm
was proposed, which can be applied for the problem with job
processing times described by non-increasing (learning) or non-
decreasing (deteriorating) functions. Furthermore, fast approximation
algorithms were provided for the general version of the problem,
where job processing times are described by arbitrary functions
(learning or deteriorating) dependent on the sum of the normal job
processing times.

Note that the pseudopolynomial time algorithm in [26] can solve
the problem with job processing times described by step functions
only, therefore in this paper, we will construct the dynamic
programming algorithm that optimally solves the more general
problem, where job processing times are described by arbitrary
stepwise functions. Moreover, the approximation algorithms in [26]
are efficient, however, they can be still significantly improved. It will
be done by their parallelization. Thus, the dynamic programming as
well as parallel algorithms constitutes the contribution of this paper.

The remainder of this paper is organized as follows. The
considered problem is formulated in Section 2. Next, the proposed
exact dynamic programming and parallel algorithms are described
in Section 3, whereas their numerical analysis is provided subse-
quently. Finally, the last section concludes the paper.

2. Problem formulation

In this section, we will define formally the considered schedul-
ing problem with a general model of job processing times, which
can model both learning and deteriorating (aging) phenomena.

A single processor and a set J ¼ f1;…;ng of n jobs that have to
be performed by the processor are given; there are no precedence
constraints between jobs. The processor is continuously available
and can process at most one job at a time. Once it begins
processing a job it continues until this job is finished. Each job j
is characterized by its weight parameter, denoted wj, and the
processing time, denoted ~pjðvÞ. When the job j is scheduled as the
vth in a sequence, its processing time is given as follows:

~pjðvÞ ¼ pj � f ∑
v�1

l ¼ 1
p½l�

 !
; ð1Þ

where pj is the normal processing time that is the time required
to perform the job if the job is processed as the first one

(i.e., pj9pjð1Þ) and f : ½0; þ1Þ-ð0; þ1� is an arbitrary function
common for all jobs, where f ð0Þ ¼ 1. Function f depends on the
sum of the normal processing times of jobs performed before job j,
i.e.,∑v�1

l ¼ 1p½l�, where p½l� denotes the normal processing time of a job
scheduled in the lth position in a sequence.

We focus on the following stepwise function characterizing the
variability of job processing times:

f ðxÞ ¼

α0; xog1
α1; g1rxog2
⋮
αm; gmrx

8>>>><
>>>>:

; ð2Þ

where m is the number of steps, αi are the arbitrary rational
numbers (where α0 ¼ 1), and g1og2o⋯ogmo∑n

j ¼ 1pj are the

thresholds that describe function f. If m¼0 or α0…¼ αm, then job
processing times are constant.

If α0 ¼ 14α14⋯4αm40, then f : ½0; þ1Þ-ð0;1� is a non-
increasing function that models the learning effect, i.e., the processor
(e.g., an autonomous agent, an algorithm, a human, an intelligent
system or a learning system in general) can increase its efficiency
during processing jobs (e.g., tasks, packets, products) and as a result
job processing times decrease. The non-increasing function ~pjðvÞ is
called the learning curve. Observe that m¼0 means there is no
learning and the job processing times are constant. Furthermore, the
values ð1�αiÞ can be perceived as the learning ratios of the processor
(the higher the values the better the learning performance of the
processor). The stepwise learning curve characterizes inter alia com-
puter systems working on the basis of machine learning algorithms
(see [36]). It can also be used as an approximation of other learning
curves in manufacturing [14] or computer systems (see [15], where a
problemwas described by the sum-of-processing-time based learning
model). Obviously, learning is noticeable in long (e.g., [16]) as well as in
short periods (e.g., [2,6,16,36]). Therefore, it is clearly justified to take it
into consideration during determination of short term schedules as
well as long horizon planning.

On the other hand, if α0 ¼ 1oα1o⋯oαmo0, then f : ½0; þ1Þ-
½1; þ1� is a non-decreasing function that models the deteriorating
(aging) effect, i.e., the efficiency of the processor (e.g., a single
worker or a group of human workers, CNC machine, tool, chemical
cleaning bath) can decrease during processing jobs and as a result
job processing times increase. The non-decreasing function ~pjðvÞ is
called the deteriorating (aging) curve. An example of a long term
aging is deterioration of tools, whereas tiredness of a human
worker during particular shifts is a short period. For more details
concerning scheduling problems with this phenomenon see [40]
or [41]. Obviously, for a given instance the function f is either non-
increasing (learning) or non-decreasing (aging/deteriorating), but
it cannot be both.

Let π ¼ 〈πð1Þ;…;πðiÞ;…;πðnÞ〉 denote the sequence of jobs
(permutation of the elements of the set J), where πðiÞ is the job
processed in position i in this sequence. Let Π denote the set of all
such permutations. For the given sequence (permutation) πAΠ,
we can easily determine the completion time CπðiÞ of a job placed

in the ith position in π from the following formula:

CπðiÞ ¼ Cπði�1Þ þ ~pπðiÞðiÞ ¼ ∑
i

l ¼ 1
~pπðlÞðlÞ; ð3Þ

where Cπð0Þ ¼ 0 and according to (1), we have ~pπðiÞðiÞ ¼ pπðiÞ�
f ð∑i�1

l ¼ 1pπðlÞÞ.
The objective is to find such control decisions, i.e., sequence

(schedule) π of jobs on the single processor, which minimizes the

R. Rudek / Computers & Operations Research 46 (2014) 91–10192



Download English Version:

https://daneshyari.com/en/article/475721

Download Persian Version:

https://daneshyari.com/article/475721

Daneshyari.com

https://daneshyari.com/en/article/475721
https://daneshyari.com/article/475721
https://daneshyari.com

