
A hybrid heuristic approach for single machine scheduling
with release times

Federico Della Croce a,b,n, Fabio Salassa a, Vincent T'kindt c

a D.A.I., Politecnico di Torino, Italy
b CNR, IEIIT, Torino, Italy
c Université Francois-Rabelais, Tours, France

a r t i c l e i n f o

Available online 1 December 2013

Keywords:
Integer programming
Matheuristics
Positional completion times

a b s t r a c t

In this work we consider the well-known one-machine total completion time sequencing problem
subject to release times. We present a very large scale neighborhood search heuristic based on
mathematical programming. This heuristic makes use of the positional completion time formulation of
the problem in which valid inequalities are added. The proposed procedure compares favorably with the
state of the art heuristics.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the one-machine total completion time sequen-
cing problem subject to release times. The problem can be stated
as follows. A set N of n jobs must be processed on a single machine
which is always available. Each job j has a processing time pj and a
release time rj. The machine can process one job at a time and the
processing of each job j cannot start before rj. Preemption is not
allowed. The objective is to minimize the sum of completion times
∑Cj where Cj denotes the completion time of job j.

The problem is known to be NP�hard in the strong sense [13]
and is denoted as 1jrjj∑Cj in the three-field classification. The
1jrjj∑Cj problem has been extensively studied in the literature.
If identical release times are considered, the related 1jj∑Cj problem
is solvable in Oðn log nÞ time by means of the so-called SPT
(Shortest Processing Time) priority rule [16]. On the other hand,
if preemption is allowed, the related 1jrj; pmtnj∑Cj problem is
solvable in Oðn log nÞ time by means of the so-called SRPT (Short-
est Remaining Processing Time) priority rule [1], where at any
time the job with shortest remaining processing time among the
available jobs is scheduled. Clearly, the optimal solution value of
the 1jrj; pmtnj∑Cj problem provided by the SRPT rule constitutes a
lower bound for the corresponding 1jrjj∑Cj problem. An improve-
ment on this bound exploiting the structural properties of the
preemptive solution has been proposed in [6]. Such improvement
is shown to run in Oðn2Þ time. Among the exact methods, we cite
the efficient exact procedures proposed in [2,14,15]. As far as

heuristic algorithms are concerned, we cite the Recovering Beam
Search (RBS) approach of [5], the tabu search approach presented
in [9] and the recent hybrid approach of [12]. In [12] is experi-
mentally reported that [5] outperforms [9] in terms of the average
deviation to the optimal solution and that [12] outperforms both
[5,9] at the cost of an important increase of the solution time.
Purpose of this work is to handle this problem by means of a
matheuristic procedure.

Matheuristics are methods that recently attracted the attention
of the community of researchers, suddenly giving rise to an
impressive amount of work in a few years. Matheuristics lie on
the general idea of exploiting the strength of both metaheuristic
algorithms and exact methods as well, leading to a “hybrid”
approach (see [11]), but because of their novelty there is no
unique classification nor a consolidated working framework in
the field; hence, it is hard to state a pure and sharp definition of
these methods.

A distinguishing feature is often the exploitation of nontrivial
mathematical programming tools as part of the solution process.
For example, in [8] a sophisticated Mixed-Integer Linear Program-
ming (MILP) solver is used for analyzing very large neighborhoods
in the solution space.

A crucial issue also underlined in [11] is that the structure of
these methods is not a priori defined and in fact a solution
approach can be built in many different ways. A simple approach
used in the present work consists of a two-stage procedure: a first
heuristic procedure is applied to the problem for generating a
starting solution and then a post processing “refinement” proce-
dure is applied exploiting, for example, some peculiar properties
of the mathematical formulation of the problem under analysis.
Here, we couple a heuristic algorithm like Recovering Beam Search
(RBS) [3,5] with a neighborhood search based on a MILP

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.11.016

n Corresponding author.
E-mail addresses: federico.dellacroce@polito.it (F. Della Croce),

fabio.salassa@polito.it (F. Salassa), tkindt@univ-tours.fr (V. T'kindt).

Computers & Operations Research 45 (2014) 7–11

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.11.016
http://dx.doi.org/10.1016/j.cor.2013.11.016
http://dx.doi.org/10.1016/j.cor.2013.11.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.016&domain=pdf
mailto:federico.dellacroce@polito.it
mailto:fabio.salassa@polito.it
mailto:tkindt@univ-tours.fr
http://dx.doi.org/10.1016/j.cor.2013.11.016
http://dx.doi.org/10.1016/j.cor.2013.11.016


formulation solved by means of a commercial tool. This approach
has already been successfully applied to the F2jj∑Cj problem [4].
The two-stage approach is appealing because of its simplicity and
for the possibility of concentrating more on modeling the neigh-
borhood instead of building up the search procedure. Exploiting
this idea we reached very good results, improving the solution
quality over the state of the art heuristics.

The remainder is organized as follows. In Section 2 a MILP
model based on positional completion times is recalled and
strengthened by means of valid inequalities. The proposed math-
euristic procedure is described in Section 3. Extensive computa-
tional testing is discussed in Section 4. Final remarks are given in
Section 5.

2. Problem formulation and valid inequalities

Various classical ILP formulations for the 1jrjj∑Cj problem have
been proposed in the literature. However, in terms of efficiency,
the positional variables ILP formulation (see [10]) turns out to be
the best one with respect to other classical models based on
disjunctive variables and constraints. This formulation is defined
as follows.

Let C½j� be the completion time of the jth job processed and let
xij be a 0=1 variable, where i; jAf1;…;ng. A variable xij is equal to
1 if job i is in position j, and 0 otherwise.

min ∑
n

j ¼ 1
C ½j� ð1Þ

subject to

∑
n

i ¼ 1
xij ¼ 1 8 j¼ 1;…;n ð2Þ

∑
n

j ¼ 1
xij ¼ 1 8 i¼ 1;…;n ð3Þ

C½1� ¼ ∑
n

i ¼ 1
ðpiþriÞxi1 ð4Þ

C½j�ZC½j�1� þ ∑
n

i ¼ 1
pixij 8 j¼ 2;…;n ð5Þ

C½j�Z ∑
n

i ¼ 1
ðpiþriÞxij 8 j¼ 2;…;n ð6Þ

xijAf0;1g; C ½j�Z0 ð7Þ
where constraints (2) and (3) state that a job is chosen for each
position in the sequence and each job is processed exactly once.
Constraint (4) sets the completion time of the first job. Constraints
(5) and (6) forbid each job to start before the job in the previous
position completes and before its release date.

The above formulation can be strengthened by adding valid
inequalities derived from properties proposed in [2,6]. We make
use of the following notation. Let the set N of jobs be reindexed in
such a way that ð1;2;…;nÞ is a Shortest Processing Time (SPT)
sequence, hence io j whenever piopj or pi¼pj and rirrj (with
ties broken arbitrarily). Let S denote the SRPT schedule and let OPT
denote the optimal sequence.

In [2], it was shown that, for all positions j, the completion time
of the jth job in OPT is greater than or equal to the completion
time of the jth job in S, that is C½j�ðOPTÞZC½j�ðSÞ.

On the other hand, in [6], an improvement over the SRPT lower
bound has been proposed by application of a logical reasoning on
positions in an optimal schedule. We recall here how this
improvement is computed. We know that a job k completed in

position ½j� in S will occupy some position in the optimal sequence
OPT and this issue can be formalized according to the following
three exhaustive cases: job k occupies position lZ ½jþ1�, job k
occupies position hr ½j�1�, or job k occupies position ½j�. In [6] it is
shown (and we refer to that paper for details) that, as one of the
above cases must hold, it is possible to compute in Oðn2Þ time a
coefficient θj (for all positions j) indicating a lower bound on the
increase in OPT of the completion times of the jobs placed in
positions [j�1], [j] and [jþ1] with respect to the jobs occupying
the same positions in the SRPT sequence S, that is C ½j�1�ðOPTÞþ
C½j�ðOPTÞþC½jþ1�ðOPTÞZC ½j�1�ðSÞþC½j�ðSÞþC½jþ1�ðSÞþθj. Notice that
position j�1 makes no sense for j¼1 and position jþ1 makes no
sense for j¼n.

Combining the above results, the following Property holds.

Property 1. The following are valid inequalities that can be added to
the problem model.

C½j�ZC½j�ðSÞ 8 jA1;…n ð8Þ

C½1� þC ½2�ZC ½1�ðSÞþC½2�ðSÞþθ1 ð9Þ

C½j�1� þC ½j� þC ½jþ1�ZC ½j�1�ðSÞþC½j�ðSÞþC ½jþ1�ðSÞþθj 8 j¼ 2…n�1

ð10Þ

C½n�1� þC ½n�ZC ½n�1�ðSÞþC ½n�ðSÞþθn ð11Þ

We conducted preliminary experiments on a QuadCore
2.67 GHz PC with 3 GB RAM to evaluate the impact of the above
valid inequalities when solving the ILP formulation by CPLEX 12.3
solver. Table 1 reports the benchmark on solution quality and time
of the pure model and the enhanced one over the whole set of 200
testbed instances with 50 jobs taken from [9] and kindly provided
by the authors. These instances are generated using the scheme
provided in [7] that we recall below. The processing times are
drawn at random from the discrete uniform distribution on [1, 100].
The release dates are uniformly distributed between ½0; 50:5nR�
where ten R values (0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0) are
considered. Globally 10 problem classes (in the following denoted
as Class1–Class10) are generated. For each class, 20 instances are
generated. A time limit of 120 s is imposed. In the table, the entry
Solved instances indicates the total number of each instances
solved to optimality within the time limit.

As we can see, the pure model is able to solve optimally just 11
instances over 200. Viceversa, the enhanced model is able to solve
optimally all instances requiring approximately 2 s on the average
and 26 s in the worst-case. Indeed, adding the valid inequalities
strongly helps in solving more efficiently the problem to optim-
ality. We also performed some experiments to evaluate the
efficiency of CPLEX 12.3 to solve the enhanced ILP formulation
compared to the dedicated best available exact approaches. We
compare this approach (indicated as ILP) with the algorithm of [14]
(indicated as TDCE) and with the algorithm of [15] (indicated as ST
and using the standard parameters indicated in the reference).
Notice that the algorithm of [14] generalizes the one of [2] and is
strictly superior to it in terms of performances. We consider here
the sets of 50-job and 100-job instances taken from [9] and

Table 1
Impact of the valid inequalities on 50 jobs instances.

Instance
size

Model (1)–
(7)

Model (1)–(11)

Solved
instances

Solved
instances

Average CPU
time (s)

Maximum CPU
time (s)

50 jobs 11/200 200/200 2.09 26.32

F. Della Croce et al. / Computers & Operations Research 45 (2014) 7–118



Download English Version:

https://daneshyari.com/en/article/475724

Download Persian Version:

https://daneshyari.com/article/475724

Daneshyari.com

https://daneshyari.com/en/article/475724
https://daneshyari.com/article/475724
https://daneshyari.com

