
Towards objective measures of algorithm performance across
instance space

Kate Smith-Miles a,n, Davaatseren Baatar a, Brendan Wreford a, Rhyd Lewis b

a School of Mathematical Sciences, Monash University, Victoria 3800, Australia
b School of Mathematics, Cardiff University, Wales, United Kingdom

a r t i c l e i n f o

Available online 6 December 2013

Keywords:
Comparative analysis
Heuristics
Graph coloring
Algorithm selection
Performance prediction

a b s t r a c t

This paper tackles the difficult but important task of objective algorithm performance assessment for
optimization. Rather than reporting average performance of algorithms across a set of chosen instances,
which may bias conclusions, we propose a methodology to enable the strengths and weaknesses of
different optimization algorithms to be compared across a broader instance space. The results reported in
a recent Computers and Operations Research paper comparing the performance of graph coloring
heuristics are revisited with this new methodology to demonstrate (i) how pockets of the instance
space can be found where algorithm performance varies significantly from the average performance of
an algorithm; (ii) how the properties of the instances can be used to predict algorithm performance on
previously unseen instances with high accuracy; and (iii) how the relative strengths and weaknesses of
each algorithm can be visualized and measured objectively.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Objective assessment of optimization algorithm performance is
notoriously difficult [1,2], especially when the conclusions depend
so heavily on the chosen test instances of the optimization
problem. The popular use of benchmark libraries of instances
(e.g. the OR-Library [3]) helps to standardize the testing of
algorithms, but may not be sufficient to reveal the true strengths
and weaknesses of algorithms. As cautioned by Hooker [1,2] nearly
two decades ago, there is a need to be careful about the conclu-
sions that can be drawn beyond the selected instances. It has been
documented that there are some optimization problems where the
benchmark library instances are not very diverse [4] and there is a
danger that algorithms are developed and tuned to perform well
on these instances without understanding the performance that
can be expected on instances with diverse properties. Further-
more, while the peer-review process usually ensures that standard
benchmark instances are used for well-studied problems, for many
real-world or more unusual optimization problems there is a lack
of benchmark instances, and a tendency for papers to be published
that report algorithm performance based only on a small set of
instances presented by the authors. Such papers typically are able
to demonstrate that the new algorithm proposed by the authors
outperforms other previously published approaches (it is difficult

to get published otherwise), and the choice of instances cannot be
challenged due to the lack of alternative instances.

The No-Free-Lunch (NFL) Theorems [5,6] state that all optimi-
zation algorithms have identically distributed performance when
objective functions are drawn uniformly at random, and all
algorithms have identical mean performance across the set of all
optimization problems. Does this idea apply also to different
instances of a particular optimization problem, which gives rise
to only a subset of possible objective functions? Probably not [7],
but it still seems unwise to believe that any one optimization
algorithm will always be superior for all possible instances of a
given problem. We should expect that any algorithm has weak-
nesses, and that some instances could be conceived where the
algorithm would be less effective than its competitors, or at least
instances exist where their competitive advantage disappears. Our
current research culture, where negative results are seen as
somehow less of a contribution than positive ones, means that
the true strengths and weaknesses of an optimization algorithm
are rarely exposed and reported. Yet for advancement of the field,
surely we must find a way to make it easier for researchers to
report the strengths and weaknesses of their algorithms. On which
types of instances does an algorithm outperform its competitors?
Where is it less effective? How can we describe those instances?

Occasionally we find a paper that presents a well-defined class
of instances where an algorithm performs well, and reports its
failing outside this class (see [8] for a recent example). Such
studies assist our understanding of an algorithm and its applic-
ability. Does the class of instances where an algorithm is effective
overlap real-world or other interesting instances? Is an algorithm

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.11.015

n Corresponding author. Tel.: þ61 3 99053170; fax: þ61 3 99054403.
E-mail address: kate.smith-miles@monash.edu (K. Smith-Miles).

Computers & Operations Research 45 (2014) 12–24

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.015&domain=pdf
mailto:kate.smith-miles@monash.edu
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://dx.doi.org/10.1016/j.cor.2013.11.015


only effective on instances where its competitors are also effective,
or are there some classes where it is uniquely powerful? How do
the properties of the instances affect algorithm performance?
Until we develop the tools to enable researchers to quickly and
easily determine the instances they need to consider to enable the
boundary of effective algorithm performance to be described and
quantified in terms of the properties of the instances, the objec-
tivity of algorithm performance assessment will always be com-
promised with sample bias.

Recently, we have been developing the components of such a
methodology [9]. Instances are represented as points in a high-
dimensional feature space, with features chosen intentionally to
tease out the similarities and differences between instance classes.
For many broad classes of optimization problems, a rich set of
features have already been identified that can be used to summar-
ize the properties of instances affecting instance difficulty (see [10]
for a survey of suitable features). Representing all available
instances of an optimization problem in a single space in this
manner can often reveal inadequacies in the diversity of the test
instances. We can observe for some problems that benchmark
instances appear to be structurally similar to randomly generated
instances, eliciting similar performance from algorithms, and are
not well designed for testing the strengths and weaknesses of
algorithms. We have previously proposed the use of evolutionary
algorithms to intentionally construct instances that are easy or
hard for specific algorithms [11], thereby guaranteeing diversity of
the instance set. Once we have sufficient instances covering most
regions of the high-dimensional feature space, we need to be able
to superimpose algorithm performance in this space and visualize
the boundaries of good performance. Using dimensional reduction
techniques such as Principal Component Analysis, we have pre-
viously proposed projecting all instances to a two-dimensional
“instance space” [9] where we can visualize the region where an
algorithm can be expected to performwell based on generalization
of its observable performance on the test instances. We call this
region the algorithm footprint in instance space, and the relative
size and uniqueness of an algorithm's footprint can be used as an
objective measure of algorithm power. Inspection of the distribu-
tion of individual features across the instance space can also be
used to generate new insights into how the properties of instances
affect algorithm performance, and machine learning techniques
can be employed in the feature space (or instance space) to predict
algorithm performance on unseen instances [12]. Over the last few
years we have applied components of this broad methodology to a
series of optimization problems including the Travelling Salesman
Problem [9,11,13], Job-Shop Scheduling [14], Quadratic Assign-
ment Problem [15], Graph Coloring [12,16], and Timetabling
Problems [17,18].

While our previous research has generated an initial metho-
dology, it has raised a number of questions that need to be
addressed for a more comprehensive tool to be developed: How
should we select the right features to represent the instance space
most effectively? How can we determine the sufficiency and
diversity of the set of instances? Can we more accurately predict
algorithm performance in the high-dimensional feature space or
the projected two-dimensional space? How should we determine
the boundary of where we expect an algorithm to perform well
based on limited observations? How can we reveal the strengths
and weaknesses of a portfolio of algorithms, as well as their
unique strengths and weaknesses within the portfolio.

This paper extends the methodology that has been under
development for the last few years by addressing these last
remaining questions. We demonstrate the use of the methodology
by applying it to some computational results reported recently
for an extensive comparison of graph coloring heuristics [19].
This case study reveals insights into the relative powers of the

chosen optimization algorithms that were not apparent by con-
sidering performance averaged across all chosen instances.

The remainder of this paper is as follows: in Section 2 we
present the framework upon which our methodology rests – the
Algorithm Selection Problem [20] – which considers the relation-
ships between the instance set, features, algorithms, and perfor-
mance metrics. The detailed steps of the methodology are then
described in Section 3, after proposing solutions to the questions
raised above. In Section 4, we present a graph coloring case study
based on the computational experiments of Lewis et al. [19] and
discuss the new insights that the methodology has generated. Our
conclusions are presented in Section 5, along with suggestions for
use of the methodology and future research directions.

2. Framework: the algorithm selection problem

In 1976, Rice [20] proposed a framework for the Algorithm
Selection Problem (ASP), which seeks to predict which algorithm
from a portfolio is likely to perform best based on measurable
features of problem instances. While Rice's focus was not on
optimization algorithms, instead applying this approach to predict
the performance of partial differential equation solvers [21,22], the
framework is one that is readily generalizable to other domains
(see the survey paper by Smith-Miles [23] for a review). There are
four essential components of the model:

� the problem space P represents a possibly infinitely sized set of
instances of a problem;

� the feature space F contains measurable characteristics of the
instances generated by a computational feature extraction
process applied to P;

� the algorithm space A is a set (portfolio) of algorithms available
to solve the problem;

� the performance space Y represents the mapping of each
algorithm to a set of performance metrics.

For performance prediction, we need to find a mechanism for
generating the mapping from feature space to algorithm space.
The Algorithm Selection Problem can be formally stated as for a
given problem instance xAP, with feature vector f ðxÞAF , find the
selection mapping Sðf ðxÞÞ into algorithm space A, such that the
selected algorithm αAA maximizes the performance mapping
yðα; xÞAY. The collection of data describing fP;F ;A;Yg is known
as the meta-data. Analysis of the meta-data, in particular using
statistical and machine learning techniques to learn the mapping S,
between features of instances and the performance of algorithms,
has been used effectively in algorithm portfolio approaches
[14,15,17,24–26] to predict the algorithm likely to perform best for
unseen instances.

In this research, we utilize the framework of Rice, but extend it to
consider our broader agenda: we are not simply concerned with
identifying the winning algorithm, but how to use the meta-data to
identify the strengths and weaknesses of algorithms, and to visualize
and quantify the relative power of algorithms. While our focus is on
optimization algorithms, we will retain the generic nature of the
framework, and highlight where domain-specific considerations
apply. Fig. 1 presents the framework for our proposed methodology.

Generating and analyzing the meta-data fP;F ;A;Yg is central to
the framework, as shown in the shaded central box describing Rice's
Algorithm Selection Problem framework, but we extend the frame-
work in each direction in order to address our broader objectives.

We start by acknowledging that Rice's problem space P should
really be considered as the set of all possible instances of a
problem, and not just the subset of instances I �P for which
we have computational results. We therefore must consider how

K. Smith-Miles et al. / Computers & Operations Research 45 (2014) 12–24 13



Download English Version:

https://daneshyari.com/en/article/475725

Download Persian Version:

https://daneshyari.com/article/475725

Daneshyari.com

https://daneshyari.com/en/article/475725
https://daneshyari.com/article/475725
https://daneshyari.com

