G Model CATTOD-9931; No. of Pages 8

ARTICLE IN PRESS

Catalysis Today xxx (2016) xxx-xxx

FISEVIED

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Methanation of carbon dioxide on Ru/Al₂O₃: Catalytic activity and infrared study

Gabriella Garbarino ^{a,*}, Daria Bellotti ^b, Elisabetta Finocchio ^a, Loredana Magistri ^b, Guido Busca ^a

- ^a Università degli Studi di Genova, Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), P.zzale J.F. Kennedy, 1 I-16129 Genova, Italy
- ^b Università degli Studi di Genova, Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Via all'Opera Pia, 15 I-16145 Genova. Italy

ARTICLE INFO

Article history:
Received 3 August 2015
Received in revised form 29 October 2015
Accepted 18 December 2015
Available online xxx

Keywords:
Methanation
CO₂
Ruthenium on alumina
Hydrogenation
Methane
Surface species

ABSTRACT

3% Ru/Al $_2$ O $_3$ catalyst is active in converting CO $_2$ into methane at atmospheric pressure. At 673 K and above the thermodynamic equilibrium is nearly attained. At 623 K CH $_4$ yield is above 85%. CO selectivity increases by decreasing reactants partial pressure apparently more than expected by thermodynamics. The reaction order for CO $_2$ partial pressure is confirmed to be zero, while that related to hydrogen pressure is near 0.38 and activation energy ranges 60–75 kJ/mol. Arrhenius plot demonstrates that only at reduced reactant partial pressure (3% CO $_2$) or high contact times, a contribution due to some diffusional limitation is present. IR study shows that the H $_2$ -reduced catalyst has high-oxidation state Ru oxide species able to oxidize CO to CO $_2$ at 173–243 K, while after oxidation/reduction cycle the alumina surface acido-basic sites are freed and the catalyst surface contains both extended Ru metal particles and dispersed low valence Ru species. IR studies show that the formation of methane, both from CO and CO $_2$, occurs when both surface carbonyl species and surface formate species are observed. Starting from CO $_2$, methane is formed already in the low temperature range, i.e., 523–573 K, even when CO is not observed in the gas phase.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The conversion of CO₂ into methane (methanation)

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$
 (1)

is one of the possible ways to utilize carbon dioxide thus reducing emissions [1], when hydrogen produced by renewable raw materials or using waste energy is available [2]. To date, commercial catalysts optimized for methanation of feeds primarily composed of carbon dioxide are apparently lacking. Conventional methanation catalysts, optimized to convert feeds containing primarily carbon monoxide, have been mostly tested as CO₂ methanation catalysts and generally found active [3]. Although commercial Nibased CO methanation catalysts have been found to be active also for CO₂ methanation [4,5] they usually also coproduce significant amounts of CO. Ru based catalysts have been reported since decades to be among the best catalysts for CO₂ methanation [6]. Although Ru/TiO₂ [7], Ru/SiO₂ and Ru/ZSM5 zeolite [8]

A point closely related to reaction selectivity is that of reaction mechanism. Until the 1970s, the mechanism of CO methanation was supposed to occur through oxygenated intermediates [6], supported also by more recent spectroscopic studies [16]. However, most recent studies tend to prefer a "via carbide" mechanism, mainly based on "surface science" investigations performed on metal monocrystals. As for the mechanism of CO₂ methanation, an

http://dx.doi.org/10.1016/j.cattod.2015.12.010 0920-5861/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: G. Garbarino, et al., Methanation of carbon dioxide on Ru/Al₂O₃: Catalytic activity and infrared study, Catal. Today (2016), http://dx.doi.org/10.1016/j.cattod.2015.12.010

have also been reported to be very active, a number of studies show good performances of Ru/Al_2O_3 catalysts [9–11], essentially better than Ni/Al_2O_3 catalysts [12]. On the other hand, Ru/Al_2O_3 catalysts are commercial catalysts for CO methanation for low temperature applications (T<443 K), such as the Clariant METH-150 catalyst that contains 0.3% ruthenium on alumina [13]. Interestingly, supported ruthenium catalysts are also reported to be the best for CO hydrogenation to higher hydrocarbons, i.e., the Fischer Tropsch process [14,15]. Obviously, for the development of a performant CO_2 methanation process, catalysts producing methane with high selectivity, thus with low CO and higher hydrocarbons coproduction, must be developed.

^{*} Corresponding author. Fax: +39 103536028. E-mail address: Gabriella.Garbarino@unige.it (G. Garbarino).

G. Garbarino et al. / Catalysis Today xxx (2016) xxx-xxx

additional central point concerns the possible role of CO, produced by the reverse Water Gas Shift reaction (rWGS)

$$CO_2 + H_2 \rightarrow CO + H_2O \tag{2}$$

as an intermediate, or/and as a competitor [17,18], the possible intermediacy of carbide species as well as the possible role of the support in adsorbing and activating CO_2 [19].

To have more information on the surface chemistry of an active $\mathrm{Ru/Al_2O_3}$ catalyst and on mechanistic aspects, we deepened our previous studies with further flow reactor experiments and by applying IR spectroscopy methods.

2. Experimental

2.1. Catalyst characterization

The catalyst used in this study is a 3% (wt%) Ru/γ - Al_2O_3 commercial catalyst (S_{BET} 150 m²/g) from Acta S.p.A. (Crespina, Pisa, Italy).

IR spectroscopy experiments were performed using a Nicolet Nexus FT instrument. Pressed disks of the pure catalysts powders were treated "in situ" by using an infrared cell connected to a conventional gas manipulation/outgassing ramp in two different ways: by a simply reduction in H_2 (500 torr) at 673 K for 1 h followed by vacuum treatment at 773 K for 30 min. Alternatively, an oxidation step in air (200 torr) at 673 K for 30 min followed by the same reduction procedure was conducted. The catalyst disk was first submitted to activation and then CO adsorption and reaction experiments were carried out.

CO adsorption was performed at 140 K by the introduction of a known dose of the gas (10 torr) inside the low temperature infrared cell containing the previously activated wafers. IR spectra were recorded during evacuation upon warming at increasing temperatures between 140 K and 673 K.

For the reaction experiments a mixture of $\rm H_2$ and $\rm CO_2$ (17 torr $\rm CO_2$ and 170 torr on IR line and cell) and one of $\rm H_2$ and CO (17 torr $\rm CO$ and 170 torr on IR line and cell) were put in contact with the catalyst disk and the reaction was performed step-by-step in-between 523–773 K for ten minutes at each temperature; for each reaction temperature IR spectra of both the gas phase and the catalyst surfaces were acquired.

2.2. Catalytic experiments

Catalytic experiments were carried out in a fixed-bed tubular silica glass flow reactor, operating isothermally, loaded with 700 mg of silica glass particles (60–70 mesh sieved) as an inert material mixed with variable amounts of catalyst powder. Different gaseous mixtures of $\rm CO_2$ and $\rm H_2$ (with excess $\rm H_2$) diluted with nitrogen were fed, with a total gas flow of 75 ml_{NTP}/min. Temperature was varied step by step in-between 523 K and 773 K (ascending temperature experiment) and back down to 523 K (descending temperature experiment). GHSV calculated as volumetric flow rate (NTP), v [ml/h] versus catalyst volume $V_{\rm cat}$ [ml] was varied in between 15000 and 55000 h⁻¹. These values correspond to 5300 and 8000 h⁻¹ if space velocity is calculated taking into account the entire bed volume $V_{\rm tot}$, constituted by silica glass and catalyst powder. Hereinafter we will always refer to the GHSV calculated on the catalyst volume.

Products analysis was performed on line using a Nicolet 6700 FT-IR instrument. Frequencies where $\rm CO_2$, $\rm CH_4$ and CO molecules absorb weakly have been used (2293 cm $^{-1}$ for $\rm CO_2$, 2100 cm $^{-1}$ for CO, 1333 cm $^{-1}$ for CH₄, after subtraction of baseline water absorption) with previous calibration using gas mixtures with known concentrations, in order to have quantitative results. Produced water was mostly condensed before the IR cell. From the inlet and

outlet concentrations calculated from the absorbances of CO, CO₂, CH₄ and the measured inlet and outlet total flows (which allow to take into account the variation of the number of moles during the reaction), CO₂ conversion ($X_{\rm CO_2}$), selectivities and yields to products, $S_{\rm i}$ and $Y_{\rm i}$, have been calculated [20]. They are defined as:

$$X_{\rm CO_2} = \frac{F_{\rm CO_2in} - F_{\rm CO_2out}}{F_{\rm CO_2in}}$$
 (3);

$$S_{i} = \frac{F_{i}}{F_{\text{CO}_{2}\text{in}} - F_{\text{CO}_{2}\text{out}}} \tag{4};$$

$$Y_{i} = \frac{F_{i}}{F_{\text{CO}_{2} \text{ in}}} \tag{5};$$

where F_i is the molar flow rate of i (i.e., CO and CH₄), while F_{CO2} is the molar flow rate of CO_2 and they were all expressed in mol/min.

From the kinetic orders determined in our previous study and from the production rate of CH₄ we calculated the kinetic constant $k \text{ [mol/(min} \times g_{\text{cat}} \times \text{atm}^{0.38})]$ designing for each test the Arrhenius plot in order to have a better understanding of the controlling regime in the different conditions [12,21].

It should be remarked that, as already reported in our previous work [12], we did not observe any coke formation in our experiments performed at the 8 h timescale. Carbon balance is $100\% \pm 1\%$ to our calculations and no evidence of coke was obtained from the catalyst weight measure nor from IR, UV–vis, FE-SEM and XRD studies.

3. Results and discussion

3.1. CO₂ methanation in flow reactor

In Fig. 1, the results of flow reactor CO_2 methanation experiments (line + symbols) on the 3% Ru/Al $_2O_3$ catalyst are reported and compared with the respective thermodynamic equilibrium for each condition. The three experiments have been performed with the same H_2/CO_2 ratio of 5 at 1 atm and the same space velocity (55,000 h $^{-1}$), but with different reactant concentrations. In all cases, no other products than methane and CO were detected. The C balance was always fully fulfilled and no evidence of carbon formation was found using IR, UV–vis, FE-SEM and XRD techniques.

The fresh catalyst is almost not active at 523 K and is only poorly active at 573 K (3% CO₂ conversion), with a small methane yield slightly increasing with time on stream. In the step performed at 623 K, the catalyst starts to have significant activity that definitely increases with time on stream, due to an activation or "conditioning" step. According to our previous study [12], the catalyst is activated essentially by reduction from a partially cationic to a metallic state. In these conditions, selectivity to methane is 100%, except for the most diluted conditions, where CO is coproduced in small amounts (2-5% yield). At 673 K, CO₂ conversion is high (from 80% to 84% and from 72% to 79% for 9% CO_2 and 6% CO_2 cases, respectively) but still growing with time on stream (Table S1), showing that a "conditioning" effect was still in progress, except again for the most diluted conditions, where the catalyst appears already stable, achieving a CO₂ conversion of 60% with a methane yield of 47%. At this temperature, CO was also formed together with methane, in particular in the most diluted conditions with a yield of 14%. On the other hand, at the end of the experiments at 673 K the conversion of CO₂ the methane yield and selectivity depend clearly on concentration of the reactants, being larger (83-84% for CO₂ conversion and 82–83% methane yield) when the reactants were more concentrated. By comparison with calculated thermodynamic equilibrium data (Fig. 1 and Table S2 calculated according to [22]), CO₂ conversion is still markedly lower than the equilibrium one. Thus, the reaction is still under kinetic control, maybe

Download English Version:

https://daneshyari.com/en/article/4757345

Download Persian Version:

https://daneshyari.com/article/4757345

Daneshyari.com