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a b s t r a c t

We address the Open Vehicle Routing Problem (OVRP), a variant of the ‘‘classical’’ (capacitated and

distance constrained) Vehicle Routing Problem (VRP) in which the vehicles are not required to return to

the depot after completing their service. We present a heuristic improvement procedure for OVRP based

on Integer Linear Programming (ILP) techniques. Given an initial feasible solution to be possibly

improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly

destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in the

attempt of finding a new improved feasible solution. The overall procedure can be considered as a

general framework which could be extended to cover other variants of Vehicle Routing Problems. We

report computational results on benchmark instances from the literature. In several cases, the proposed

algorithm is able to find the new best known solution for the considered instances.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We address the Open Vehicle Routing Problem (OVRP), a
variant of the ‘‘classical’’ (capacitated and distance constrained)
Vehicle Routing Problem (VRP) in which the vehicles are not
required to return to the depot after completing their service.
OVRP can be formally stated as follows. We are given a central
depot and a set of n customers, which are associated with the
nodes of a complete undirected graph G¼(V,E) (where
V¼{0,1,y,n}, node 0 represents the depot and V\f0g is the set of
customers). Each edge eAE has an associated finite cost ceZ0 and
each customer vAV\f0g has a demand qv40 (with q0¼0). A fleet
of m identical vehicles is located at the depot, each one with a fixed

cost F, a capacity Q and a total distance-traveled (duration) limit D.
The customers must be served by at most m Hamiltonian paths
(open routes), each path associated with one vehicle, starting at
the depot and ending at one of the customers. Each route must
have a duration (computed as the sum of the edge costs in the
route) not exceeding the given limit D of the vehicles, and can
visit a subset S of customers whose total demand

P
vA Sqv does not

exceed the given capacity Q. The problem consists of finding a
feasible solution covering (i.e., visiting) exactly once all the
customers and having a minimum overall cost, computed as the
sum of the traveled edge costs plus the fixed costs associated with
the vehicles used to serve the customers. OVRP is known to be

NP-hard in the strong sense, as it generalizes the Bin Packing
Problem and the Hamiltonian Path Problem.

In this paper we present a heuristic improvement procedure
for OVRP based on Integer Linear Programming (ILP) techniques.
Given an initial feasible solution to be possibly improved, the
procedure iteratively performs the following steps: (a) randomly
select several customers from the current solution, and build the
restricted solution obtained from the current one by extracting
(i.e., short-cutting) the selected customers; (b) reallocate the
extracted customers to the restricted solution by solving an ILP
problem, in the attempt of finding a new improved feasible
solution. This method has been proposed by De Franceschi et al.
[7] and deeply investigated by Toth and Tramontani [27] in the
context of the classical VRP. Here, we consider a simpler version
of this approach, which exploits no particular feature of the
addressed problem. The method follows a destruct-and-repair
paradigm, where the current solution is randomly destroyed (i.e.,
customers are removed in a random way) and repaired by
following ILP techniques. Hence, the overall procedure can be
considered as a general framework which could be extended to
cover other variants of Vehicle Routing Problems.

The notion of using ILP techniques to improve a feasible
solution of a combinatorial optimization problem has emerged in
several papers in the last few years. Addressing the split delivery
VRP, Archetti et al. [2] developed a heuristic algorithm that
integrates tabu search with ILP by solving integer programs to
explore promising parts of the solution space identified by a tabu
search heuristic. A similar approach has been presented by
Archetti et al. [1] for an inventory routing problem. Hewitt et al.
[15] proposed to solve the capacitated fixed charge network flow
problem by combining exact and heuristic approaches. In this
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case as well a key ingredient of the method is to use ILP to
improve feasible solutions found during the search. Finally, the
idea of exploiting ILP to explore promising neighborhoods of
feasible solutions has been also investigated in the context of
general purpose integer programs; see, e.g., Fischetti and Lodi [10]
and Danna et al. [6]. The methods presented in [6,10] are
currently embedded in the commercial mixed integer program-
ming solver Cplex [16].

The paper is organized as follows. Section 2 recalls the main
works proposed in the literature for OVRP. In Section 3 we
describe a neighborhood for OVRP and the ILP model which
allows to implicitly define and explore the presented neighbor-
hood. The implementation of the heuristic improvement proce-
dure is given in Section 4, while Section 5 reports the
computational experiments on benchmark capacitated OVRP
instances from the literature (with/without distance constraints),
comparing the presented method with the most effective
metaheuristic techniques proposed for OVRP. Some conclusions
are finally drawn in Section 6.

2. Literature review

The classical VRP is a fundamental combinatorial optimization
problem which has been widely studied in the literature (see, e.g.,
Toth and Vigo [28] and Cordeau et al. [5]). At first glance, having
open routes instead of closed ones looks like a minor change, and in
fact OVRP can be also formulated as a VRP on a directed graph, by
fixing to 0 the cost of each arc entering the depot. However, if the
undirected case is considered, the open version turns out to be
more general than the closed one. Indeed, as shown by Letchford
et al. [17], any closed VRP on n customers in a complete undirected
graph can be transformed into an OVRP on n customers, but there
is no transformation in the reverse direction. Further, there are
many practical applications in which OVRP naturally arises. This
happens, of course, when a company does not own a vehicle fleet,
and hence customers are served by hired vehicles which are not
required to come back to the depot (see, e.g., Tarantilis et al. [26]).
But the open model also arises in pick-up and delivery applications,
where each vehicle starts at the depot, delivers to a set of
customers and then it is required to visit the same customers in
reverse order, picking up items that have to be backhauled to the
depot. An application of this type is described in Schrage [23].
Further areas of application, involving the planning of train services
and of school bus routes, are reported by Fu et al. [13].

OVRP has recently received an increasing attention in the
literature. Exact branch-and-cut and branch-cut-and-price
approaches have been proposed, respectively, by Letchford et al.
[17] and Pessoa et al. [19], addressing the capacitated problem
with no distance constraints and no empty routes allowed (i.e.,
D¼1 and exactly m vehicles must be used). Heuristic and
metaheuristic algorithms usually take into account both capacity
and distance constraints, and consider the number of routes as a
decision variable. In particular, an unlimited number of vehicles is
supposed to be available (i.e., m¼1) and the objective function is
generally to minimize the number of used vehicles first and the
traveling cost second, assuming that the fixed cost of an
additional vehicle always exceeds any traveling cost that could
be saved by its use (i.e., considering F ¼1). However, several
authors address as well the variant in which there are no fixed
costs associated with the vehicles (i.e., F¼0) and hence the
objective function is to minimize the total traveling cost with no
attention to the number of used vehicles (see, e.g., Tarantilis et al.
[26]). Considering capacity constraints only (i.e., taking D¼1),
Sariklis and Powell [22] propose a two-phase heuristic which first
assigns customers to clusters and then builds a Hamiltonian path

for each cluster, Tarantilis et al. [24] describe a population-based
heuristic, while Tarantilis et al. [25,26] present threshold accept-
ing metaheuristics. Taking into account both capacity and
distance constraints, Brand~ao [3], Fu et al. [13,14] and Derigs
and Reuter [8] propose tabu search heuristics, Li et al. [18]
describe a record-to-record travel heuristic, Pisinger and Ropke
[20] present an adaptive large neighborhood search heuristic
which follows a destruct-and-repair paradigm, while Fleszar et al.
[12] propose a variable neighborhood search heuristic.

3. Reallocation model

Let z be a feasible solution of the OVRP defined on G. For any
given node subset F � V\f0g, we define zðF Þ as the restricted solution

obtained from z by extracting (i.e., by short-cutting) all the nodes
vAF . LetR be the set of routes in the restricted solution, I ¼ I ðz,F Þ
the set of all the edges in zðF Þ, and S ¼ SðF Þ the set of all the
sequences which can be obtained through the recombination of
nodes in F (i.e., the set of all the elementary paths in F ). Each edge
iAI is viewed as a potential insertion point which can allocate one or
more nodes in F through at most one sequence sAS. We say that
the insertion point i¼ ða,bÞAI allocates the nodes fvjAF :

j¼ 1, . . . ,hg through the sequence s¼ ðv1,v2, . . . ,vhÞAS, if the edge
(a,b) in the restricted solution is replaced by the edges
(a,v1),(v1,v2),y,(vh,b) in the new feasible solution. Since the res-
tricted routes, as well as the final ones, are open paths starting at the
depot, in addition to the edges of the restricted solution we also
consider the insertion points (called appending insertion points in the
following) i¼(pr,0), where pr denotes the last customer visited by
route rAR, which allow to append any sequence to the last
customer of any restricted route. Further, empty routes in the
restricted solution are associated with insertion points (0,0).

For each sequence sAS, c(s) and q(s) denote, respectively, the cost
of the elementary path corresponding to s and the sum of the
demands of the nodes in s. For each insertion point i¼ ða,bÞAI and
for each sequence s¼ ðv1,v2, . . . ,vhÞAS, gsi denotes the extra-cost (i.e.,
the extra-distance) for assigning sequence s to insertion point i in its
best possible orientation (i.e., gsi :¼ cðsÞ�cabþminfcav1

þcvhb,cavh
þ

cv1bg). Note that, for the appending insertion points i¼(pr,0), gsi is
computed as cðsÞþminfcpr v1

,cpr vh
g. The extra-cost for assigning the

sequence s to the insertion point i¼(0,0) associated with an empty
route is simply cðsÞþminfc0v1

,c0vh
g. For each route rAR, I ðrÞ denotes

the set of insertion points associated with r, while ~qðrÞ and ~cðrÞ

denote, respectively, the total demand and the total distance
computed for route r, still in the restricted solution.

For each iAI , SiDS denotes a sequence subset containing the
sequences which can be allocated to the specific insertion point i.
The definition of Si will be discussed later in this section. Then, a
neighborhood of the given solution z can be formulated (and
explored) by solving an ILP problem (denoted as the Reallocation

Model) based on the decision variables

xsi ¼
1 if sequence sASi is allocated to insertion point iAI ,

0 otherwise,

(

ð1Þ

which reads as follows:X
rAR

~cðrÞþmin
X
iAI

X
sASi

gsixsi ð2Þ

subject toX
iAI

X
sASiðvÞ

xsi ¼ 1, vAF , ð3Þ

X
sASi

xsir1, iAI , ð4Þ
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