
Parallel machine scheduling with precedence constraints and setup times

Bernat Gacias a,b, Christian Artigues a,b, Pierre Lopez a,b,�

a CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France
b Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

a r t i c l e i n f o

Available online 7 March 2010

Keywords:

Parallel machine scheduling

Setup times

Precedence constraints

Dominance conditions

Branch-and-bound

Limited discrepancy search

Local search

a b s t r a c t

This paper presents different methods for solving parallel machine scheduling problems with

precedence constraints and setup times between the jobs. These problems are strongly NP-hard and

it is even conjectured that no list scheduling algorithm can be defined without explicitly considering

jointly scheduling and resource allocation. We propose dominance conditions based on the analysis of

the problem structure and an extension to setup times of the energetic reasoning constraint

propagation algorithm. An exact branch-and-bound procedure and a climbing discrepancy search

(CDS) heuristic based on these components are defined. We show how the proposed dominance rules

can still be valid in the CDS scheme. The proposed methods are evaluated on a set of randomly

generated instances and compared with previous results from the literature and those obtained with an

efficient commercial solver. We conclude that our propositions are quite competitive and our results

even outperform other approaches in most cases.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with parallel machine scheduling with
precedence constraints and setup times between the execution
of jobs. We consider the optimization of two different criteria: the
minimization of the sum of completion times and the minimiza-
tion of maximum lateness. These two criteria are of great interest
in production scheduling. The sum of completion times is a
criterion that maximizes the production flow and minimizes the
work-in-process inventories. Due dates of jobs can be associated
to the delivery dates of products. Therefore, the minimization of
maximum lateness is a goal of due date satisfaction in order to
disturb as less as possible the customer who is delivered with the
longest delay. These problems are strongly NP-hard [1].

The parallel machine scheduling problem has been widely
studied [2], specially because it appears as a relaxation of more
complex problems like the hybrid flow shop scheduling problem
or the RCPSP (resource-constrained project scheduling problem).
Several methods have been proposed to solve this problem. In
Chen and Powell [3], a column generation strategy is proposed.
Pearn et al. [4] propose a linear program and an efficient heuristic
for large-size instances for the resolution of priority constraints
and family setup times problem. Salem et al. [5] solve the problem
with a tree search method. More recently, Néron et al. [6] compare

two different branching schemes and several tree search strategies
for the problem with release dates and tails for the makespan
minimization case.

However, the literature on parallel machine scheduling with
precedence constraints and setup times is quite limited. Baev et al.
[7] and van den Akker et al. [8] deal with the problem with
precedence constraints for the minimization of the sum of
completion times and maximum lateness, respectively. The setup
times case is considered in Schutten and Leussink [9] and in
Ovacik and Uzsoy [10] for the minimization of maximum lateness.
Uzsoy and Velasquez [11] deal with the same criterion on a single
machine with family-dependent setup times. Finally, Nessah et al.
[12] propose a lower bound and a branch-and-bound method for
the minimization of the sum of completion times.

Problems that have either precedence constraints or setup
times, but not both, can be solved by list scheduling algorithms. It
means there exists a total ordering of the jobs (i.e., a list) that,
when a given machine assignment rule is applied, reaches the
optimal solution [13]. For a regular criterion, this rule is called
earliest completion time (ECT). It consists in allocating every job to
the machine that allows it to be completed at the earliest. This
reasoning unfortunately does not work when precedence con-
straints and setup times are considered together, as shown in
Hurink and Knust [14]. We have then to modify the way to solve
the problem and consider both scheduling and resource allocation
decisions.

In this paper we propose to solve these problems through
branch-and-bound for small-sized instances and local search for
large-scale instances. To compensate search tree explosion due to
machine assignment enumeration, we propose new constraint

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2010.03.003

� Corresponding author at: CNRS; LAAS; 7 avenue du Colonel Roche, F-31077

Toulouse, France.

E-mail addresses: bgacias@laas.fr (B. Gacias), artigues@laas.fr (C. Artigues),

lopez@laas.fr (P. Lopez).

Computers & Operations Research 37 (2010) 2141–2151

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.03.003
mailto:bgacias@laas.fr
mailto:artigues@laas.fr
mailto:lopez@laas.fr


ARTICLE IN PRESS

propagation and dominance rules. For the local search method, we
retain the principle of neighborhood exploration using a tree
search structure in order to discard dominated solutions as soon as
possible and we propose variants of the climbing discrepancy
search method (CDS) proposed by Milano and Roli [15]. In
particular we propose adapted dominance rules to avoid discard-
ing solutions that do not have a dominant counterpart in the
explored neighborhood.

In Section 2, we define formally the parallel machine schedul-
ing problem with setup times and precedence constraints between
jobs. The solution properties and the implications on branch-and-
bound and local search are presented in Section 3. In Section 4 we
present the branch-and-bound method and its components: tree
structure, lower bounds, and dominance rules. Discrepancy-based
tree search methods are described in Section 5. Section 6 is
dedicated to computational experiments.

2. Problem definition

We consider a set J of n jobs to be processed on m parallel
machines. The precedence relations between the jobs and the
setup times, considered when different jobs are sequenced on the
same machine, must be satisfied. The preemption is not allowed,
so each job is continually processed during pi time units on the
same machine. The machine can process no more than one job at a
time. The decision variables of the problem are the start times of
every job i¼1yn, Si, and let us define Ci as the completion time of
job i, where Ci¼Si+pi. Let ri and di be the release date and the due
date of job i, respectively. Due dates are only considered for job
lateness computation. We denote by E the set of precedence
constraints between jobs. The relation ði,jÞAE, with i,jA J, means
that job i is performed before job j ði!jÞ such that job j can start
only after the end of job i ðSjZCiÞ. Finally, we define sij as the setup
time needed when job j is processed immediately after job i on the
same machine. Thus, for two jobs i and j processed successively on
the same machine, we have either SjZCiþsij if i precedes j, or
SiZCjþsji if j precedes i. Using the notation of Graham et al. [1],
the problems under consideration are denoted: Pmjprec,sij,rij

P
Ci

for the minimization of the sum of completion times and
Pmjprec,sij,rijLmax for the minimization of the maximum lateness.

Example

A set of five jobs (n¼5) must be executed on two parallel
machines (m¼2). For every job i, we give pi, ri, di, and sij (see
Table 1). Besides, for that example we have the precedence
constraints: 1!4 and 2!5.

Fig. 1 displays a feasible solution for this problem. The set of
precedence constraints is satisfied: S5 ¼ 13Z3¼ C2 and
S4 ¼ 5Z5¼ C1. We stress that job 4 must postpone its start time
on M2 by one time unit because of the precedence constraint. On
the other hand, we have to check that, for every job i, rirSi and
that setup times between two sequenced jobs on the same
machine are also respected. For the evaluation of the solution, we
observe that for the minimization of the sum of completion times
the value of the function is z¼

P
Ci ¼ 43 and for the minimization

of maximum lateness z¼Lmax¼L5¼10.

3. Solution properties and impact on branch-and-bound and
local search

3.1. Solution properties

In Schutten [13], the author proves that the parallel machine
scheduling problem with either setup times between jobs or
precedence constraints can be solved to optimality by a list
scheduling algorithm. He demonstrates that the schedules built
using the list scheduling algorithm with earliest completion time
assignment rule are dominant schedules.

However, precedence constraints and setup times parallel
machine scheduling problems may not be efficiently solved by a
list algorithm as conjectured by Hurink and Knust [14]. It means
that there possibly does not exist a job assignment rule that
reaches an optimal solution when all the possible lists of jobs are
enumerated. Let us consider the minimization of the sum of
completion times for four jobs scheduled on two parallel
machines. The data of the problem are displayed in Table 2.

If we consider the problem without precedence constraints, we
find two optimal solutions ð

P
Ci ¼ 9Þ when we allocate the jobs

following the earliest completion time rule for the lists {1,2,4,3}
and {2,1,4,3} (see Fig. 2a). Now, let us consider the same problem
with the precedence constraint 3!4. In that case, there does not
exist any allocation rule that reaches an optimal solution for any
list of jobs that respects the precedence constraint. The optimal

Table 1
Example 1 data.

(a)

n pi ri di

1 4 1 7

2 3 0 5

3 4 3 8

4 3 3 10

5 2 1 5

(b)

sij 1 2 3 4 5

1 0 2 3 4 5

2 7 0 6 1 3

3 2 4 0 7 1

4 4 4 8 0 1

5 3 4 8 5 0

Fig. 1. Feasible schedule.

Table 2
Example 2 data.

(a)

n pi ri

1 1 0

2 1 0

3 1 2

4 1 2

(b)

sij 1 2 3 4

1 0 10 2 10

2 10 0 1 1

3 10 10 0 10

4 10 10 10 0

B. Gacias et al. / Computers & Operations Research 37 (2010) 2141–21512142



Download English Version:

https://daneshyari.com/en/article/475757

Download Persian Version:

https://daneshyari.com/article/475757

Daneshyari.com

https://daneshyari.com/en/article/475757
https://daneshyari.com/article/475757
https://daneshyari.com

