ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Highly selective and efficient photocatalytic reduction of nitrate in water by a tandem reaction system consisting of Pt/TiO₂ and SnPd/Al₂O₃: A comparative study of the tandem reaction system with a typical semiconductor photocatalyst, SnPd/TiO₂

Jun Hirayama a,b, Yuichi Kamiya a,*

- ^a Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- ^b Japan Society for the Promotion of Science (JSPS), 5-3-1 Chiyoda-ku, Tokyo 102-0083, Japan

ARTICLE INFO

Article history: Received 18 November 2016 Revised 27 December 2016 Accepted 27 December 2016

Keywords:
Photocatalysis
Nitrate reduction
Pt/TiO₂
Tandem reaction system
Catalytic function differentiation
Tin–palladium bimetal
Hydrogenation

ABSTRACT

A tandem reaction system consisting of a photocatalyst (Pt/TiO₂) and a nonphotocatalyst (SnPd/Al₂O₃) promoted the reduction of NO_3^- into gaseous products (mainly N_2) under light irradiation ($\lambda > 300$ nm) in the presence of glucose as a hole scavenger. Photocatalytic H_2 evolution $(2H^+ + 2e^- \rightarrow H_2)$ proceeded over Pt/TiO₂, and conventional catalytic reduction of NO_3^- with H_2 ($NO_3^- + 5/2H_2 \rightarrow 1/2N_2 + 2H_2O + 1/2N_2 + 2H_2O + 1/2N_2 + 2H_2O + 1/2N_2 + 2H_2O + 1/2N_2 +$ OH⁻) occurred over SnPd/Al₂O₃. We optimized the loading amount of Pt on TiO₂, the Sn/Pd ratio, the loading amount of SnPd on Al₂O₃, and the two catalyst dosages. The optimized tandem system gave a high reduction rate of NO₃ and a high selectivity for gas (94%) from the photocatalytic reduction of NO₃ in water. On the other hand, a typical semiconductor photocatalyst SnPd/TiO₂ with an optimized Sn/Pd ratio and an optimized loading amount of SnPd bimetal on TiO2 reduced NO3 about two-thirds as fast as the tandem system and was less selective for gas (70%). The tandem system suppressed the wasted H₂ formation, resulting in high light use efficiency for the NO₃ reduction (95%), which is defined as the ratio of the number of electrons consumed for NO₃ reduction to the total number of electrons consumed for both NO₃ reduction and photocatalytic H₂ evolution, though the tandem and SnPd/TiO₂ systems consumed about the same total number of electrons. The tandem system has two advantages: (i) the Pt/ TiO2 and SnPd/Al2O3 subsystems can be separately designed to give highly efficient photocatalytic and catalytic reactions, respectively; and (ii) the reaction rates of photocatalytic and catalytic reactions can be easily controlled by changing the catalyst dosage in the reactor. Those advantages brought about a high reduction rate for NO₃, high selectivity for gas, and high light use efficiency for NO₃ reduction in the photocatalytic reduction of NO₃ in water.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Photocatalytic reactions over semiconductor photocatalysts, such as TiO_2 and WO_3 , proceed sequentially by the following steps: (i) adsorption of substrate onto the surface, (ii) photoabsorption forming photoexcited electrons (e^-) and holes (h^+) in the bulk, (iii) migration of e^- and h^+ to the surface, (iv) participation of e^- and h^+ in reduction and oxidation, respectively, with the substrates on the surface, and (v) recombination of unreacted e^- and h^+ . For reactions in aqueous solution, water is included in the substrate in steps (i) and (iv). The observed rates of the chemical reactions, that is, the rates of reactant consumption and product formation,

depend on the rates of these steps, unless radical chain reactions occur in solution or gas phase. The rates of steps (i), (ii), (iii), and (iv) positively influence the observed rate, whereas the rate of (v) negatively influences it, if those are involved in the rate-determining step.

Generally, the photocatalytic activity of unmodified (bare) semiconductor photocatalysts is low, but the rate can be dramatically increased by modifying the semiconductor with a small amount of a metal [1-29], which is called a co-catalyst. One function of co-catalysts, such as Pt [1-5] and Pd [6-10], is to prolong the charge-separated state of photoexcited electrons and holes by the trapping of either electrons or holes on the co-catalyst [11]. In this way, the rate of (v) is decreased, although an excess of the co-catalyst increases the rate of recombination of e^- and h^+ [11]. Another function of co-catalysts is to activate substrate

^{*} Corresponding author. Fax: +81 11 706 2217. E-mail address: kamiya@ees.hokudai.ac.jp (Y. Kamiya).

molecules via adsorption, which accelerates the rate of (iv): for example, NiO_x [12–16] and $Rh_{2-v}Cr_vO_3$ [17–19] for water splitting; Ag [20-22] for CO_2 reduction; and CuPd [23-26] for NO_3^- reduction. For the photocatalytic reduction of CO₂ or NO₃ in water, the photocatalytic reduction of water (H⁺) to form gaseous H₂ can occur in parallel with the target reaction over a co-catalyst with low hydrogen overpotential such as Pt or Pd [23,27,28]. Photocatalytic H₂ evolution lowers the photocatalytic performance for the target reaction, as pointed out by Anderson [27,28] and Lucchetti et al. [30], because photoexcited electrons are wasted to form H₂, rather than reducing the substrates in water. Thus, H₂ production needs to be suppressed to enhance photocatalytic efficiency. Because both reactions (H₂ evolution and the reduction of CO₂ or NO₃) proceed on the co-catalyst, the co-catalyst needs to have excellent adsorption of substrate molecules to preferentially promote the reduction of substrates rather than H2 evolution. If the two functions of the co-catalyst (prolonging the charge-separated state of photoexcited electrons and holes and activating substrate molecules) are maximized simultaneously by optimizing the design of the co-catalyst, including the choice of element, loading amount, crystalline structure, and particle size, then extremely highperformance semiconductor photocatalysts can be obtained. However, it is very difficult, in general, to achieve simultaneous maximization.

To overcome this difficulty, the use of a tandem reaction system has been proposed, in which the photocatalytic/catalytic functions are distributed to separate particles and these are reconstituted in the reaction mixture. Artificial Z-scheme photocatalytic water splitting [31–33], which affords H_2 and O_2 , is a great example of function distribution over separate catalysts. In the Z-scheme photocatalytic system, O_2 and H_2 evolution sites are built on separate semiconductor photocatalysts (e.g., WO_3 for O_2 evolution and TaON for H_2 evolution), and the two catalysts are added to the reaction mixture with a redox shuttle between them.

We have previously reported a tandem reaction system consisting of a photocatalyst and a nonphotocatalyst (typical catalyst) for the photocatalytic reduction of NO_3^- in water (Fig. 1a) [34–36]. In the tandem reaction system, H_2 is formed by a photocatalytic reaction over the photocatalyst,

$$2H^+ + 2e^- \rightarrow H_2, \tag{1}$$

and this H₂ reduces NO₃ in water over the nonphotocatalyst:

$$NO_3^- + 5/2H_2 \rightarrow 1/2N_2 + 2H_2O + OH^-.$$
 (2)

In the tandem reaction system, the photocatalyst and nonphotocatalyst can be developed independently to maximize their performance. In addition, the two reaction rates can be adjusted appropriately by changing the doses of the photocatalyst and nonphotocatalyst in the reaction mixture. Thus, the tandem reaction system has a great potential to become a much better system for photocatalytic NO_3^- reduction in terms of both activity and selec-

tivity than a conventional system of a semiconductor directly combined with a co-catalyst, which we call a single reaction system (Fig. 1b). Based on the concept described above, we have developed a tandem reaction system using a photocatalyst (Pt/TiO₂ [34,35], Pt/SrTiO₃:Rh [36]) and a nonphotocatalyst (SnPd/Al₂O₃) that shows high photocatalytic activity and excellent selectivity for gases, including N_2 and N_2 O.

In the present study, we compared in detail the photocatalytic performance of a tandem reaction system consisting of a Pt/TiO_2 photocatalyst and a $SnPd/Al_2O_3$ nonphotocatalyst with that of a single semiconductor photocatalyst, $SnPd/TiO_2$, to demonstrate the superiority of the tandem reaction system. Before the comparison, the tandem and single reaction systems were comprehensively optimized. In particular, we focused on the reduction rate of NO_3^- , product selectivity, and light use efficiency for NO_3^- reduction. The photocatalytic reduction of NO_3^- in water is a promising method of purifying groundwater polluted with NO_3^- , which is a serious global problem. In the purification of groundwater, the formation of ammonia and ammonium ions is undesirable due to their toxicity, and so the reaction systems should have high selectivity for gaseous products, such as N_2 and N_2O , as well as high photocatalytic activity.

2. Experimental

2.1. Preparation of catalysts

Aeroxide TiO₂ P25 (Evonik) was used as a TiO₂ photocatalyst. Modification of TiO₂ with Pt was conducted by photodeposition. TiO₂ (2 g) was dispersed in distilled water (135 cm³) and then CH₃-OH (15 cm³, Wako Pure Chemical Industries) and H₂PtCl₆·6H₂O (0.04 mol dm $^{-3}$, Wako Pure Chemical Industries) were added to the suspension. In a Pyrex glass cell, the suspension was sparged with a stream of N₂ (15 cm³ min $^{-1}$) for 30 min and then irradiated using a 300 W Xe lamp (Optical Modulex, USHIO) for 3 h with stirring.

The suspension was centrifuged and the supernatant was replaced with distilled water (200 cm³). The suspension was stirred for a few minutes and centrifuged again. This process was repeated three times. Finally, the catalyst powder was dried in air at 333 K overnight. The obtained catalyst is denoted as Pt/TiO₂.

Supporting Sn and Pd on Al_2O_3 (Aerosil Alu C) was conducted by incipient wetness impregnation. Al_2O_3 was heated in air at 523 K for 4 h before use. An aqueous solution of PdCl₂ (0.112 mol dm⁻³, Wako Pure Chemical Industries) was dropped onto Al_2O_3 (2.0 g), and the resulting wet solid was dried in air at 373 K overnight, followed by calcination in air at 523 K for 3 h. An aqueous solution of $SnCl_2 \cdot 2H_2O$ (0.172 mol dm⁻³, Wako Pure Chemical Industries) was dropped onto the resulting solid, and then the wet solid was dried in air at 373 K overnight, followed by calcination in air at 523 K for 3 h. The obtained catalyst is denoted as $SnPd/Al_2O_3$. When we pay

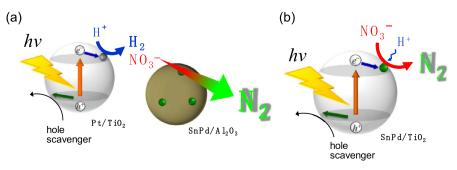


Fig. 1. Schematic images of (a) a tandem reaction system and (b) a single reaction system.

Download English Version:

https://daneshyari.com/en/article/4757575

Download Persian Version:

https://daneshyari.com/article/4757575

<u>Daneshyari.com</u>