Journal of Catalysis 342 (2016) 84-97

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Mechanistic assessments of NO oxidation turnover rates and active site densities on WO₃-promoted CeO₂ catalysts

Masaoki Iwasaki ^{a,1}, Enrique Iglesia ^{a,b,*}

^a Department of Chemical Engineering, University of California, Berkeley, CA 94720, United States ^b E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

ARTICLE INFO

Article history: Received 8 May 2016 Revised 21 June 2016 Accepted 10 July 2016

Keywords: NO oxidation Cerium oxide Tungsten oxide UV-visible spectroscopy Active site density

ABSTRACT

The effects of NO, NO₂ and O₂ pressures on NO oxidation rates and UV-visible spectra are used here to assess the elementary steps and the number and type of redox-active sites involved in NO oxidation on CeO₂ promoted by contact with WO₃ domains. The reversible chemisorption of O_2 on vacancies (*) and the subsequent dissociation of O_2^* assisted by NO to form O^* and NO_2 are the kinetically-relevant steps on surfaces with O^{*} coverage set by NO–NO₂ equilibration. $O_{2p} \rightarrow Ce_{4f}$ ligand-to-metal charge transfer (LMCT) bands probe the rate constants for O₂^{*} formation and desorption at catalytic conditions; their comparison with those derived from rate data confirms the mechanistic conclusions and the involvement of CeO₂ surfaces promoted by contact with WO₃ domains. These data allow an accurate assessment of the number and type of redox-active sites, thus allowing reactivity comparisons among catalysts based on turnover rates. The number of redox-active sites increased with increasing W surface density (2.1–9.5 W/nm²), but NO oxidation turnover rates were essentially unchanged. These elementary steps and active structures differ markedly from those that mediate NO oxidation on Pt, PdO, RhO₂ and Co₃O₄ catalysts. Turnover rates are similar on WO₃/CeO₂ and Pt-based catalysts at practical temperatures of diesel exhaust treatment (~500 K), but WO₃/CeO₂ catalysts exhibit much higher rates based on catalyst mass (>10-fold), thus rendering useful as less costly and more resilient alternatives to noble metals. These findings illustrate a method to probe the number and type of redox-active sites and conceptual insights into the pathways that mediate the chemisorption and activation of O₂ by isolated vacancies and the subsequent dissociation of O=O bonds by assistance from co-reactants.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Nitrogen oxides [NO_x (NO and NO₂)] from hydrocarbon combustion exhaust cause photochemical smog, acid rain, and stratospheric ozone depletion [1,2]. NO_x can be converted into dinitrogen (N₂) via reactions with ammonia (NH₃) in the presence of dioxygen (O₂) via selective catalytic reduction (SCR) processes [3]. The presence of equimolar NO-NO₂ mixtures leads to faster reactions ("fast SCR" (NO + NO₂ + 2NH₃ \rightarrow 2N₂ + 3H₂O)) than in the absence of NO₂ (2NO + $\frac{1}{2}O_2$ + 2NH₃ \rightarrow 2N₂ + 3H₂O) [4]. The prevalence of NO in effluent streams thus requires NO oxidation to NO₂ for the efficient performance of NH₃-NO_x processes. Metals (Pt [5,6]) and their oxides (PdO [7], RhO₂ [8], Co₃O₄ [8,9], MnO_x

[10]) catalyze these reactions at relevant exhaust conditions; their active sites and reaction mechanism are well understood and involve O_2 activation on vacancies present at surfaces nearly saturated with oxygen adatoms as the kinetically-relevant steps [5–8]. These catalysts, however, are also effective in NH₃ oxidation to NO_x, thus degrading the effectiveness of SCR abatement strategies [11,12].

Recently, Cu cations exchanged into small-pore molecular sieves with chabazite (CHA) frameworks (SSZ-13, SAPO-34) have been found to exhibit excellent SCR activity and hydrothermal stability [13–15]. Theory and experiments have suggested that NO oxidation proceeds via (i) molecular O₂ adsorption on Cu dimers to form Cu–O₂–Cu as a side-on peroxide (η^2 -O₂), (ii) NO(g) reactions with these species to form Cu–O–Cu and NO₂(g), and (iii) O-atom removal from Cu–O–Cu by NO(g) to form another NO₂ molecule, with step (ii) as the kinetically-relevant step [16].

Tungsten (W) and niobium (Nb) oxides dispersed on ceria (CeO_2) also exhibit high SCR activity, as well as excellent N₂ selectivity and resistance to sulfur dioxide (SO₂), over a broad temper-

CATALYSIS

JOURNAL OF

^{*} Corresponding author at: Department of Chemical Engineering, University of California, Berkeley, CA, United States.

E-mail address: iglesia@berkeley.edu (E. Iglesia).

¹ Permanent address: Toyota Central R&D Laboratories Inc., Natakute, Aichi 480-1192, Japan.

ature range (473–723 K) [17–26]. These catalyst systems are based on non-toxic elements and include WO₃-CeO₂ [17–19], WO₃-CeO₂-TiO₂ [20,21], WO₃-CeO₂-ZrO₂ [22,23], Nb₂O₅-CeO₂ [24,25], and Nb₂O₅-WO₃-CeO₂-TiO₂ compositions [26]. The requirement for acid and redox sites, proposed for SCR on V₂O₅-TiO₂ [27], may also account for the promotional effects of WO₃ on CeO₂, via the formation of acid centers in WO₃ domains [19]. SCR reactions are likely to require acid sites, but such sites do not catalyze NO oxidation at relevant SCR conditions (473–723 K), thus preventing the involvement of fast-SCR pathways that require NO₂ molecules [28,29]. The redox properties of CeO₂ lead to low but detectable NO oxidation reactivity; such properties have been implicated in its promotion of the SCR-reactivity of TiO₂ [30]. Hence, NO oxidation reactivity measurements provide an effective probe of the presence and reactivity of redox sites in these catalysts.

Intrapellet physical mixtures of ZrO_2 -supported WO_3 (denoted WO_3/ZrO_2), a prototypical acid catalyst, with CeO_2 led to higher SCR rates but did not influence NO oxidation rates [31]. The dispersion of WO_3 domains onto CeO_2 (WO_3/CeO_2), however, increased both SCR and NO oxidation rates over those on pure CeO_2 [31], suggesting that redox-active sites form via atomic contact between WO_3 domains and CeO_2 surfaces. The mechanistic details of NO oxidation and the nature of such sites on these catalysts remain unclear and are the subject of the present study.

Here, we report NO oxidation turnover rates (normalized by the number of redox-active sites) under conditions of strict kinetic control on WO_3/CeO_2 (2.1–9.5 W nm⁻²) and CeO_2 to assess the identity and kinetic relevance of the elementary steps involved. We provide evidence for the kinetic relevance of steps involving the reversible molecular adsorption of O₂ followed by the irreversible dissociation of the chemisorbed oxygen molecules (O_2^*) assisted by interactions with NO(g). These conclusions are consistent with UV-visible spectra acquired at steady-state and transient conditions, which detected reversible changes in the ligand-tometal charge transfer (LMCT) band shifts corresponding to O₂ species. The number and reactivity of such O₂^{*} species, formed at reduced Ce centers promoted by interactions with WO₃ domain. were determined from these spectroscopic data and used to normalize rates, thus allowing an accurate determination of active site densities by comparing kinetic parameters obtained from NO oxidation rate data and from LMCT spectral features. These data allowed the first rigorous assessment of the number of active sites involved in catalytic turnovers through the analysis of transient spectra to obtain intrinsic rate constants (i.e. per site) for the kinetically-relevant O₂ activation steps. The quantitative interpretation of the effects of W density on the number of active sites provides fundamental and conceptual insights into the type and genesis of the redox-active sites that form by atomic contact between CeO₂ surfaces and WO₃ domains.

2. Experimental methods

2.1. Catalyst preparation and characterization

CeO₂ powders (Rhodia, 150 m² g⁻¹) were heated to 873 K at 0.08 K s⁻¹ in flowing air (0.3 cm³ s⁻¹ g⁻¹) and held for 10 h. These CeO₂ powders (75 m² g⁻¹, BET surface area) were impregnated to incipient wetness using aqueous ammonium metatungstate solutions ((NH₄)₆H₂W₁₂O₄₀, Strem Chemicals, 99.9%) containing the desired amount of W, treated in static ambient air at 383 K overnight, and then, treated in flowing dry air (0.8 cm³ s⁻¹ g⁻¹) at 823 K (0.08 K s⁻¹) for 3 h. WO₃/CeO₂ samples prepared with 4, 8 and 13 wt% WO₃ gave BET surface areas of 49, 39 and 35 m² g⁻¹, corresponding to 2.1, 5.3 and 9.5 W-atom nm⁻² surface densities, respectively. BET surface areas were determined using the single-

point method (Micro Data, Micro Sorp 4232II) after treatment at 523 K for 0.33 h in N_2 flow (0.4 cm³ s⁻¹).

WO₃/ZrO₂ samples were also prepared in a similar manner to WO₃/CeO₂. ZrO₂ powders (Daiichi Kigenso Kagaku Kogyo, RC-100, 114 m² g⁻¹) were impregnated using an $(NH_4)_6H_2W_{12}O_{40}$ aqueous solution and treated using the same protocols as for WO₃/CeO₂. Samples with 10 and 15 wt% WO₃ concentrations gave BET surface areas of 101 and 93 m² g⁻¹, leading to 2.6 and 4.2 W-atom nm⁻² surface densities, respectively.

2.2. Steady-state NO oxidation rate measurements

The reactant gases (Praxair, 3% NO/He, 1% NO₂/He, 20% O₂/He) and the He diluent (Praxair, 99.999%) were metered using electronic controllers (Porter Instruments) to give the desired reactant pressures (0.03-0.43 kPa NO, 0.01-0.23 kPa NO₂, 1-18 kPa O₂). The inlet and outlet NO and NO₂ concentrations were measured with an infrared analyzer (MKS Multi Gas Analyzer 2030, 2-cm³ cell; 2-cm path length, 353 K).

Catalyst samples were pelleted and sieved to retain particles 125–180 µm in diameter and then diluted with guartz powder (Fluka: 125-180 µm) at guartz/catalyst mass ratios of 0.3-10 for WO_3/CeO_2 and 0–3 for CeO₂. Samples were held on a porous guartz frit within a U-shaped quartz tube (10 mm) kept at constant temperature (±0.3 K) by a resistively heated furnace. Temperatures were measured using K-type thermocouples placed at the outer reactor wall and controlled electronically (Watlow Series 96). The catalyst samples (WO₃/CeO₂; 0.035–0.9 g, CeO₂; 0.3–1.4 g, WO₃/ ZrO₂; 1.4 g) were heated to 673 K at 0.08 K s⁻¹ in flowing 5% $O_2/$ He $(3.3 \text{ cm}^3 \text{ s}^{-1})$ and then exposed to the reactants (0.1 kPa NO, $0.05 \text{ kPa } \text{NO}_2$, 5 kPa O_2 , 3.3 cm³ s⁻¹) at 673 K for 2 h before rate measurements. The rates were measured at a standard condition (0.1 kPa NO, 0.05 kPa NO₂, 5 kPa O₂, 3.3 cm³ s⁻¹) after each experiment at different conditions to ensure that changes in structure or reactivity with time did not influence the measured kinetic responses. NO₂ formation was not detected on the quartz powder used as diluent or in any transfer lines (Figs. S1 and S2 in Supplementary Information (SI)).

Intrapellet concentration or temperature gradients were ruled out by mixing WO_3/CeO_2 with fumed SiO_2 (Fluka) and then pelleting and sieving to retain 125–180 µm aggregates (intrapellet $SiO_2/$ catalyst = 3; quartz/catalyst = 24). NO oxidation rates were unaffected by intrapellet or bed dilution (Figs. S2 and S3; SI), indicating that the local concentrations and temperatures are identical to those measured in the fluid phase; therefore, the rates reported here reflect the intrinsic chemical reaction rates devoid of transport artifacts.

2.3. Diffuse reflectance UV-visible spectroscopy

Diffuse reflectance UV-visible spectra were collected using a Cary 4 Varian spectrophotometer with a Harrick Scientific diffuse reflectance attachment (DRP-XXX) and a reaction chamber (DRA-2CR). The reaction cell was modified with a quartz frit to support catalyst samples and to improve flow and temperature uniformity. Spectra were acquired in the 1.55–6.2 eV range (0.0002–0.015 eV step, 360 s per spectrum) in 2.5–70 kPa O₂ in He, 5 kPa H₂ in He, or pure He streams. The Kubelka–Munk function [32] was used to convert reflectance (R_{sample}) into pseudo-absorbances ($F(R_{\infty})$) using the reflectance of quartz powder (Fluka) as a reference white reflector ($R_{reference}$).

$$R_{\infty} = R_{\text{sample}} / R_{\text{reference}} \tag{1}$$

$$F(R_{\infty}) = (1 - R_{\infty})^2 / 2R_{\infty}$$
⁽²⁾

Download English Version:

https://daneshyari.com/en/article/4757598

Download Persian Version:

https://daneshyari.com/article/4757598

Daneshyari.com