
ELSEVIER

Contents lists available at ScienceDirect

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Supercritical CO₂ extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method

Adil Mouahid*, Cyril Dufour, Elisabeth Badens

Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

ARTICLE INFO

Keywords:
Supercritical CO₂
Hydrodistillation
Extraction
Corsican plant
Essential oil
Sovová's models

ABSTRACT

Generally speaking, essential oils (EOs) and components of interest are extracted from plants using hydrodistillation (HD), steam distillation or organic solvent methods The Supercritical CO_2 (SC- CO_2) extraction technique is a good alternative to the three previously mentioned methods as it is able to be applied at temperatures close to ambient and shows no toxicity to humans or the environment. The aim of this study is to investigate the ability of supercritical CO_2 extraction to extract bioactive components from four Corsican endemic plants: Rosmarinus officinalis, Juniperus communis ssp nana, Helichrysum italicum and Pistacia lentiscus. After the extracts were analyzed by gas chromatography, it would appear that SC- CO_2 is the most adapted process for the extraction of such components of interest as verbenone, germacrene D, bornyl acetate, ferruginol, transcaryophyllene, elemol, γ -cadinene, geraniol or β -eudesmol in higher quantity. The SC- CO_2 extraction curves were obtained using two models published by Sovová. These models give access to complementary information and help to estimate the values of some important data such as the possible maximal extraction yield for Helichrysum italicum and the end of the extraction period.

1. Introduction

EOs are complex and variable mixtures of organic and volatile components mainly composed of terpenes in addition to some aromatic components. Those compounds can be located in all parts of the plants: flowers, leaves, roots, stems, fruits and seeds. The EOs extracted from the different parts exhibit various biological properties and thanks to this feature, plants are used for applications in pharmaceuticals, food, cosmetics and fragrances [1–7]. On the island of Corsica (France), a wide variety of aromatic and medicinal plants can be found. These endemic plants are used in all the above-mentioned fields of applications as they have therapeutic, organoleptic and fragrance properties [8–16]. The EOs extracted from Corsican endemic plants are products with high added values mainly commercialized by local producers.

At industrial scale, EOs are extracted by classical hydrodistillation (HD) or steam distillation methods. Nevertheless, using these technics has an incidence of low extraction yields, high energy costs and the loss or degradation of some specific compounds, especially heat-sensitive compounds, by thermal or hydrolysis effects. The quality of EOs may consequently be impaired.

In fine chemistry applications, different groups of components are extracted from plants by applying organic solvent methods. However, a separation step is needed and traces of organic solvent can be found in the extracts. These disadvantages have led to the development of alternative separation techniques based on the use of supercritical fluids. In such processes, $SC-CO_2$ is most commonly used since it is non-toxic, relatively inert, non-flammable and readily available as a by-product of the chemical industry.

SC-CO₂ is considered as a GRAS (Generally Recognized As Safe) solvent. Due to its low critical temperature (304.21 K), SC-CO₂ can be used to extract heat-sensitive components, it can be quite selective and its solvent power can be improved by tuning temperature and pressure. Furthermore, no separation step is needed as CO₂ is gaseous under ambient conditions of temperature and pressure. Finally, CO₂ is recycled at industrial scale enabling a completely clean and compact process [17]. SC-CO₂ extraction has been used as an efficient process for extracting oil from different parts of plants, with extracts having interesting applications in pharmaceutical and food applications [18–24].

The comparison between $SC-CO_2$ and HD methods for the extraction of components of interest has been investigated for a huge diversity of plant species [5,25–35]. The results reported in these studies clearly show that $SC-CO_2$ extraction leads to the highest extraction yield, improved oil quality, and a higher selectivity of the extracted components. In the above-mentioned references, the experiments were performed at laboratory scale, the effects of the use of a co-solvent and the effects of the experimental $SC-CO_2$ extraction parameters (pressure, temperature)

E-mail address: adil.mouahid@univ-amu.fr (A. Mouahid).

^{*} Corresponding author.

nclature		(kg solvent kg ⁻¹ insolublesolid)
	q'	Specific flow rate (kg _{solvent} kg ⁻¹ _{solid} s ⁻¹)
Specific area between the regions of intact and broken	r	Grinding efficiency or fraction of broken cells
cells (m ⁻¹)	t	Extraction time (s)
BIC model parameter	$t_{comb,i}$	Combined characteristic time of mass transfer (s)
BIC model parameter	t_f	Characteristic time of the fluid phase mass transfer (s)
Concentration of extract in the plant before extraction	t_r	Residence time (s)
$(kg kg^{-1}_{plant})$	t_1	Time of the end of the first extraction period (s)
Effective intraparticle diffusion coefficient (m ² s ⁻¹)	y_o	Initial fluid phase concentration (kg solute kg ⁻¹ solvent)
Mass loss (kg extract kg ⁻¹ plant)		
Initial fraction of extract in open cells	Greek letters	
Fluid-phase mass transfer coefficient (s ⁻¹)		
Mass-related partition coefficient (kg _{plant} kg ⁻¹ _{solvent})	ϵ	bed void fraction
Solid-phase mass transfer coefficient (m s ⁻¹)	$ heta_f$	Dimensionless external mass transfer resistance
Relative amount of the passed solvent at the crossing point	ρ_s	Plant density (kg m ⁻³)
	Specific area between the regions of intact and broken cells (m $^{-1}$) BIC model parameter BIC model parameter Concentration of extract in the plant before extraction (kg kg $^{-1}$ plant) Effective intraparticle diffusion coefficient (m 2 s $^{-1}$) Mass loss (kg extract kg $^{-1}$ plant) Initial fraction of extract in open cells Fluid-phase mass transfer coefficient (s $^{-1}$) Mass-related partition coefficient (kgplant kg $^{-1}$ solvent) Solid-phase mass transfer coefficient (m s $^{-1}$)	Specific area between the regions of intact and broken r cells (m^{-1}) t BIC model parameter $t_{comb,i}$ BIC model parameter $t_{comb,i}$ t Specific area between the regions of intact and broken t t BIC model parameter $t_{comb,i}$ t

as well as the effect of sample pre-treatment and extraction time were studied in order to give the optimal conditions for extracting up to three specific components and/or leading to the highest extraction yield.

To our knowledge, no investigations have so far been conducted on the comparison of SC-CO₂ and HD methods in the extraction of components of interest from Corsican endemic plants. Considering the importance and the quality of the EOs from these types of plants and regarding the previous studies reported in the literature, this study aims to investigate SC-CO₂ extraction from four Corsican endemic plants and make a comparison with the HD method. The Corsican endemic plants species selected for this work are: Rosmarinus officinalis, Juniperus communis ssp nana, Helichrysum italicum and Pistacia lentiscus. These species were chosen because of their highly interesting biological properties and their various fields of applications in food, cosmetics and pharmaceutics.

Numerous studies dealing with the composition of EOs and their biological activities [36–43], and the SC-CO $_2$ extracts from plants [44–52] have been reported in the literature for similar species. Furthermore, it is well-known that various parameters such as geographical location [53], harvest period [54], extracting method [55] have non negligible effects on the chemical compositions of plants, which can lead to a different EO composition for the same plant species.

The main aim of this work is to investigate the feasibility of obtaining bioactive molecules which are either not or only slightly able to be extracted by HD, by applying the $SC\text{-}CO_2$ extraction method. Unlike previous studies, it was decided here not to determine the optimal operating extraction conditions but to make investigations at a specific pressure, temperature and flow rate using an easily applicable sample pre-treatment.

The operating pressure and temperature for SC-CO $_2$ extraction were chosen by taking into account the following criteria: easily applicable at industrial scale, pilot scale and laboratory scale applications, involving a solvent power comparable to typical organic solvents (SC-CO $_2$ density higher than 800 kg m $^{-3}$) [18,23] and allowing the extraction of volatile compounds. A pressure of 300 bar and a temperature of 313 K (SC-CO $_2$ density about 909.89 kg m $^{-3}$) were selected. The SC-CO $_2$ flow rate was set at 0.4 kg h $^{-1}$. The extracts and the EOs obtained by SC-CO2 extraction and HD respectively were analysed by gas chromatography. The effect of the extraction method on the extraction yields is also presented. The biological activities of the SC-CO $_2$ main extracted components were compared to those obtained by HD. The HD process was conducted at industrial scale whereas SC-CO $_2$ extractions were conducted at laboratory scale.

2. Materials and methods

2.1. Plant material

The four Corsican endemic plants Rosmarinus officinalis, Juniperus communis ssp nana, Helichrysum italicum and Pistacia lentiscus, were picked in Corsica. The samples were collected during the flowering period (between April and May 2012) in the middle of the island, next to the town of Corte. The leaves and flowers were separated from their stems and placed in glass vials surrounded by aluminum paper, to protect them from light and stored at 4 °C to avoid the loss of volatile compounds and/or degradation. Before the SC-CO₂ extraction experiments, the leaves and flowers were cut in order to increase the contact area. The average equivalent particle diameter was about 1 cm; no further pre-treatment was applied.

2.2. Chemicals

Supercritical ${\rm CO_2}$ extractions were carried out with carbon dioxide of 99.7% purity supplied by Air Liquide Méditerranée (France). Anhydrous ethanol used for collecting the extracts was purchased from Carlo Erba (France).

2.3. HD and SC-CO2 extraction

The classical HD process was performed on *Rosmarinus officinalis* and *Helichrysum italicum* at industrial scale on about 500 kg of dried plant mass for 3 h without any sample pre-treatment. The SC-CO₂ extractions of *Rosmarinus officinalis*, *Helichrysum italicum*, *Juniperus communis ssp nana* and *Pistacia lentiscus* were performed in a laboratory scale apparatus equipped with a 20 mL extraction autoclave provided by Separex (Champigneulles, France); the scheme of the set-up is shown in Fig. 1. All SC-CO₂ extractions were performed at 300 bar, 313 K at a CO₂ flow rate of 0.4 kg h⁻¹ on *Juniperus communis ssp nana* and *Pistacia lentiscus* leaves, on *Rosmarinus officinalis* leaves and flowers, and on *Helichrysum italicum* flowers. The sample mass introduced in the extraction autoclave for SC-CO₂ extraction, was 9.519 g for *Helichrysum italicum*, 6.356 g for *Juniperus communis ssp nana*, 6.674 g for *Pistacia lentiscus* and 6.257 g for *Rosmarinus officinalis*.

Fig. 1 The experimental setup is as follows:

Liquid CO_2 (1) is cooled in a cryogenic bath (2), filtered and pumped (3) to the extraction vessel (4). Before entering the extraction vessel, CO_2 is heated until the chosen temperature. The extraction vessel which contains the sample is also heated. Pressure is controlled by a pressure gauge (5). Downstream of the extraction vessel, CO_2 is released to gas state through an expansion valve (6). The extracted compounds are recovered in a collector (7). The flow is measured thanks to the flow meter (8) placed at the end of the extraction

Download English Version:

https://daneshyari.com/en/article/4757670

Download Persian Version:

https://daneshyari.com/article/4757670

<u>Daneshyari.com</u>