

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Activation of hydrogen peroxide during the corrosion of nanoscale zero valent copper in acidic solution

Peng Zhou, Jing Zhang*, Yongli Zhang, Juan Liang, Ya Liu, Bei Liu, Wei Zhang

College of Architecture & Environment, Sichuan University, Chengdu 610065, PR China

ARTICLE INFO

Article history: Received 5 June 2016 Received in revised form 16 August 2016 Accepted 22 August 2016 Available online 23 August 2016

Keywords: Hydrogen peroxide Nanoscale zero valent copper Hydroxyl radical Benzoic acid

ABSTRACT

Activation of hydrogen peroxide (H_2O_2) and its mechanism were investigated during corrosion of nanoscale zero valent copper (nZVC) in acidic aqueous solution. As the radical probe compound, benzoic acid (BA) degradation was completely achieved after 25 min in the nZVC/H₂O₂ system at initial pH 3.0. H₂O₂ can accelerate the corrosion of nZVC to release Cu⁺ resulting in the further activation of H₂O₂ via a Fenton-like reaction in acidic aqueous solution. The released Cu⁺ during the corrosion of nZVC is the main effective copper species to activate H₂O₂ to produce •OH in the nZVC/H₂O₂ system. Hydroxyl radical (•OH) was verified as the primary reactive oxidant which is responsible for BA degradation in the nZVC/H₂O₂ system owing to the intense inhibition of BA degradation with the addition of excess *tert*-butyl alcohol (TBA). Moreover, acidic aqueous solution facilitates the degradation rate of BA. In addition, the present study put forward an interesting idea to make full use of intermediate Cu⁺ to activate H₂O₂ during corrosion of nZVC to degrade organic contaminants.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing influence of human activities, synthetic organic chemicals were frequently used and released into lakes or rivers that led to the sustained deterioration of water resources. Hence, advanced oxidation processes (AOPs) has fascinate practitioners of water treatment resulting from the generation of highly and unselective oxidizing radicals such as hydroxyl radical (•OH) which can effectively degrade or mineralize recalcitrant pollutants [1].

In recent literatures, zero valent metals, which could activate molecular oxygen to induce the generation of reactive oxygen species (ROS), are receiving increasing attention, including nanoscale zero valent iron (nZVI) [2–4] and zero valent aluminium (ZVAI) [5–8]. Such as, Joo and coworkers[3] reported that carbothiolate herbicide, molinate, could be effectively degraded during dissolution of nZVI in acidic aerobic aqueous solution (pH < 4.8) *via in situ* generation of H₂O₂ which subsequent transform into •OH by Fenton reaction. It is similar to nZVI, the corrosion of ZVAI could induce the simultaneous generation of Al³⁺ and H₂O₂ resulting from the electron transfer from ZVAI to O₂ in acidic condi-

http://dx.doi.org/10.1016/j.molcata.2016.08.022 1381-1169/© 2016 Elsevier B.V. All rights reserved. tions (pH < 4), and showed the observably ability on 4-chlorophenol degradation [7]. All these being showed, H_2O_2 generated by electron transfer from zero valent metals or low valent ions to O_2 is a key intermediate. However, *in situ* generation of H_2O_2 is feeble and could reduce performance efficiency of zero valent metals to activate H_2O_2 .

Moreover, copper, one of the major redox-active transition metals [9], which has been reported to be an activator of H_2O_2 to activate H_2O_2 to produce •OH *via* the catalytic redox cycle of Cu(II)/Cu(I) [10–14]. Nevertheless, Cu(I) was seldom used to activate H_2O_2 resulting from it is unstable and easily oxidized to Cu(II) by oxygen or other oxidants in aqueous solutions [15–17]. In order to expand the application of Cu material in Fenton-like system, many researchers have made copper chelated complexes (*e.g.* Cu-EDTA and Cu(OH)PO₄) [18,19], copper electrode-based [20] and copper-metal bimetallic composite catalysts [21] to induce the generation of •OH which could degrade the organic contaminants in heterogeneous Fenton-like systems. However, the application of Cu materials in homogeneous Fenton-like system was severely limited by the instability of Cu⁺.

Whereas, the current literatures reported that some reducing agents (*e.g.* L-ascorbic acid and hydroxylamine) could be employed to reduce Cu(II) into intermediate Cu(I) to induce the chain reactions of copper resulting in the generation of •OH *via* a homogeneous Fenton-like reaction [22–24], which put forward

^{*} Corresponding author. E-mail address: zjing428@163.com (J. Zhang).

that the instantaneous intermediate Cu(I) could be a prominent activator of H_2O_2 to induce the generation •OH. Moreover, it has been reported recently that the corrosive dissolution of zero valent copper and accompanying reduction of oxygen could induce the simultaneous generation of intermediate Cu(I) [25]. Therefore, it is a potential capacity for nanoscale zero valent copper (nZVC) to release Cu⁺ during the corrosion of nZVC to activate H_2O_2 resulting in •OH formation to degrade organic contaminants. According to our review, there is no report on the use of Cu⁺ to activate H_2O_2 to degrade organic contaminants during nZVC corrosion. Based on the highly reaction rate constant with •OH [26], the relatively simple chemical structure, and the stable property with conventional oxidants, benzoic acid (BA) was employed as •OH probe in this study [27,28].

The presented work studied the BA degradation efficiency in the $nZVC/H_2O_2$ system and specifically focused on the mechanism of the $nZVC/H_2O_2$ system, identification of primary reactive oxidants, and the effects of initial pH and nZVC dosage.

2. Materials and methods

2.1. Materials

Nanoscale zero valent copper (nZVC, >99.9%, size: 10–30 nm), zero valent copper (ZVC, >99.9%, average particle size: 5 μ m), and neocuproine hemihydrate (NCP, >98%) were purchased from Aladdin Industrial Corporation. BA (\geq 99.5%), and CuSO₄·5H₂O (\geq 99.0%) were supplied by Sigma-Aldrich. Hydrogen peroxide (H₂O₂, 30%), *tert*-butyl alcohol (TBA), potassium titanium oxalate, sodium sulfite, sulfuric acid, and sodium hydroxide from Chengdu Kelong chemical reagent factory were of analytic purity. Ammonium acetate and methanol (MA) from Sigma-Aldrich were of HPLC grade. Pure oxygen gas (O₂, \geq 99.2%) and pure nitrogen gas (N₂, \geq 99.99%) were stored in gas cylinders.

2.2. Experimental procedure

The activation of H_2O_2 by nZVC was carried out at 12 ± 1 °C with 500 mL glass flask under a constant stirring rate in Milli-Q water (18.25 M Ω cm). Most of the experiments were operated open to the air. However, for some experiments requiring aerobic or anaerobic aqueous solutions, pure O_2 or pure N_2 was bubbled into the reactor for 15 min prior to the initiation of the reaction to investigate the effect of dissolved oxygen (DO). The desired pH value was adjusted by 1 M H₂SO₄ and 1 M NaOH. Each reaction was switched on by simultaneous adding the desired dosage of BA, nZVC, and H₂O₂. TBA was beforehand added into the reaction solution to perform the quenching experiment. For some experiments, NCP was used as Cu(I)-chelating to investigate the role of Cu⁺ in the process. After filtration with the glass fiber membrane (pore size: 0.45 μ m), the samples were withdrawn from the reaction solution and simultaneously mixed with a small amount of sodium sulfite (1 M).

2.3. Analytical methods

The concentration of BA in the samples was analyzed on reversephase HLPC chromatography (Waters, e2695) equipped with a 2489 λ UV absorbance detector. The binary phase composition was methanol/0.1% ammonium acetate (30:70, v/v) and detection wavelength was 227 nm for BA. The concentration of H₂O₂ in the samples was measured by UV–vis spectrometer (UV-1800, Shanghai MAPADA Instrument Co., Ltd.) at 400 nm after chelated by potassium titanium oxalate. The pH in the aqueous solution was measured by a pH meter (Shanghai Leici Apparatus Fac., PHB-4). Total concentration of dissolved copper (TCu) were measured by a PerkinElmer[®] PinAAcle 900T flame atomic absorption

Fig. 1. Degradation of BA in the nZVC/H₂O₂ system. [BA]₀ = 20 μ M, [H₂O₂]₀ = 1 mM, [nZVC]₀ = 40 mg/L, [Cu²⁺]₀ = 40 mg/L, pH₀ = 3.0.

spectrometer (FAAS) (Sheltom, CT, USA) equipped with two hollow multi-element cathode lamps. Accumulation concentration of Cu⁺ (TCu⁺) was determined by spectrophotometric method after chelated with NCP [29].

3. Results and discussions

3.1. Degradation efficiency of BA in the nZVC/H₂O₂ system

Fig. 1 shows the removal of BA in the nZVC/H₂O₂ system at acidic aqueous solution (initial pH 3.0). Less than 8% BA was degraded by the nZVC system after 25 min when the dosage of nZVC is 40 mg/L. And 22.5% BA was degraded in the ZVC/H₂O₂ system. Surprisingly, the BA was completely degraded in the nZVC/H₂O₂ system after 25 min. The above results clearly demonstrated that the nZVC/H₂O₂ system is an effective system to degrade BA in acidic aqueous solution. In contrast, no BA removal was observed in the Cu^{2+}/H_2O_2 system with the same dosage of Cu^{2+} which can infer that Cu^{2+} is not an efficiency activator for H_2O_2 in the acidic aqueous solution.

3.2. Identification of primary reactive oxidants

In the previous studies [10,11,30], it has been suggested that •OH could be formed in the copper-catalyzed decomposition of H_2O_2 system. In order to investigate the contribution of •OH in the nZVC/H₂O₂ system on BA degradation, TBA was introduced into the nZVC/H₂O₂ system because of its higher reaction rate constant with •OH ($6.0 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) [26]. Fig. 2 shows that 92.0% BA was degraded in the nZVC/H₂O₂ system after 25 min. In contrast, less than 14% BA was degraded after 25 min with the addition of 5 mM TBA (the nZVC/H₂O₂-TBA system). Hence, it is followed that •OH is the primary reactive oxidant of the nZVC/H₂O₂ system.

3.3. Effective copper species to activate H_2O_2

It has been reported that Cu⁺ is an effective activator for H_2O_2 to induce the generation of •OH by the Fenton-like reaction (Eq. (1)) [10,11,30]. However, Cu⁺ could be rapidly oxidized to Cu²⁺ by oxidizing agents in aqueous solution [15–17]. Thus, the variation of Cu⁺ concentration is not detected by spectrophotometric method employing NCP as a chromogenic agent for Cu⁺ (detection limit ~100 µg/L) [29,30]. Whereas, with the addition of NCP in advance, the accumulation of Cu⁺ (TCu⁺) as the reaction proceeded was detected in the nZVC/H₂O₂ system at pH 3.0. As shown

Download English Version:

https://daneshyari.com/en/article/4757739

Download Persian Version:

https://daneshyari.com/article/4757739

Daneshyari.com