G Model MOLCAA-9771; No. of Pages 8

Journal of Molecular Catalysis A: Chemical xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

K₂MgSiO₄: A novel K⁺-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg₃Si₂O₅(OH)₄

Fabiane Carvalho Ballotin^a, Thérèse Ebambi Cibaka^a, Tatiana A. Ribeiro-Santos^a, Eleonice Moreira Santos^b, Ana Paula de Carvalho Teixeira^a, Rochel Montero Lago^{a,*}

- a Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, MG 31270-901, Brazil
- ^b Universidade Federal de Ouro Preto, Escola de Nutrição ENUT, Departamento de Alimentos, Ouro Preto, MG 35400-000, Brazil

ARTICLE INFO

Article history: Received 31 October 2015 Received in revised form 1 February 2016 Accepted 2 February 2016 Available online xxx

Keywords: K₂MgSiO₄ Serpentinite Biodiesel

ABSTRACT

In this study, a new catalyst for biodiesel synthesis, based on K₂MgSiO₄, was produced from the mineral serpentinite. TG, SEM, XRD, AA, BET analyses showed that serpentinite Mg₃Si₂O₅(OH)₄ impregnated with KOH (5,10 and 20 wt%), and thermally treated at 500 °C, 700 and 900 °C, can be converted to the main crystalline phase K₂MgSiO₄. Analyses by TPD-MS (CO₂) and titration suggested the presence of weak/medium basic sites in relatively high concentrations. Biodiesel production using soybean oil (methanol:soybean oil ratio of 1:12, 1:9; 1:6, 60 °C) showed yields higher than 95% with catalyst at 10 wt%, which can be reused for three consecutive times without significant decrease on the reaction yield. The obtained results are discussed in terms of a new catalytic phase based on K⁺ ions trapped in the cavities of the MgSiO₄² structure containing negatively charged oxygen basic sites.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Basic catalysts, such as alkaline metal hydroxides and methoxides are widely employed as homogeneous catalysts in the biodiesel industrial process [1,2]. However, the use of homogeneous catalysts, leads to some problems such as: the need of a washing step, the formation of emulsions, large volumes of wastewater, the need of a drying step and loss of the catalyst [2-4]. On the other hand, heterogeneous catalysts can offer several advantages such as the possibility of reuse [5], elimination of some steps in the process and simple separation from the final product [6], resulting in significant decrease on production costs [7].

Different basic heterogeneous catalysts have been investigated, such as mixed oxides CaO-CeO₂ [8], alumina supported metals [9], and especially earth alkaline metals oxides, e.g., CaO [10] and MgO [11], which are the most used for biodiesel synthesis. Several studies have shown that the basicity and activity of biodiesel catalysts can be increased by the addition of different elements, especially potassium. Some examples are K⁺ doped titanate nanotubes [12] K⁺ supported on TiO₂ [13], KOH/bentonite [14] and K⁺/chrysotile [15].

In this work, serpentinite Mg₃Si₂O₅(OH)₄ was used as precursor to produce a K⁺ basic catalyst for biodiesel synthesis. Serpentinite, an inexpensive mineral and in some cases a waste, is formed by a Si oxide tetrahedral sheet bound to Mg(OH)2 based octahedral layer [16]. Serpentinite has been used in simple applications such as construction, steel mills, magnesium production [17], fertilizer [18] and for CO₂ storage [17,19]. Serpentinite can be a very versatile precursor to produce Mg based materials since under controlled thermal treatment, the Mg₃Si₂O₅(OH)₄ phase dehydrates to produce different Mg containing phases such as dispersed MgO, Mg₂SiO₄ besides other SiO₂ based phases. A simplified equation can be used to represent the serpentinite decomposition:

$$\label{eq:mg3Si2O5} Mg_3Si_2O_5(OH)_4 \rightarrow MgO + Mg_2SiO_4 + SiO_2 + 2H_2O \tag{1}$$

* Corresponding author. Fax: +55 31 3409 5777. Here on, it is described the reaction of serpentinite with KOH to E-mail addresses: fballotin@ufmg.br (F.C. Ballotin), tcibaka@gmail.com produce the phase K₂MgSiO₄ with basic properties, where K⁺ ions (T.E. Cibaka), tatianaaribeiros@yahoo.com.br (T.A. Ribeiro-Santos), are trapped in the cavities formed by the SiO₄ and MgO₄ structural emsquimica@hotmail.com (E.M. Santos), anapct@ufmg.br (A.P.d.C. Teixeira), tetrahedra (Fig. 1). rochel@ufmg.br (R.M. Lago).

http://dx.doi.org/10.1016/j.molcata.2016.02.006

1381-1169/© 2016 Elsevier B.V. All rights reserved.

F.C. Ballotin et al. / Journal of Molecular Catalysis A: Chemical xxx (2016) xxx-xxx

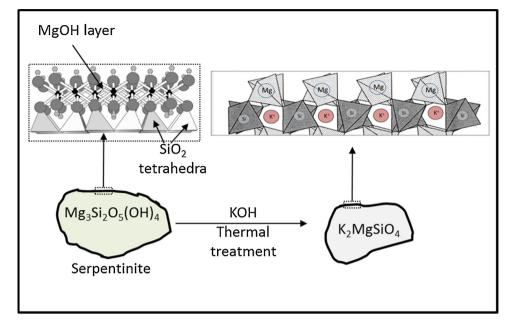
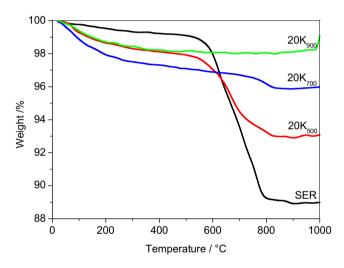



Fig. 1. Schematic representation of the thermal decomposition of serpentinite KOH/Mg₃Si₂O₅(OH)₄ to form the phase K₂MgSiO₄.

Fig. 2. TG/DTG curves for serpentinite (SER) and serpentinite samples impregnated with K^+ after thermal treatment at 500, 700 and 900 °C (20 K_{500} , 20 K_{700} and 20 K_{900}).

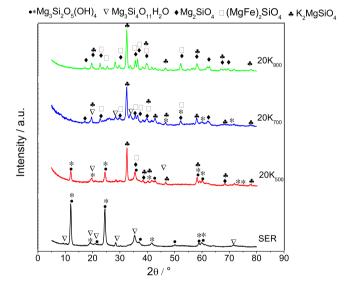


Fig. 3. XRD patterns of serpentinite samples SER, and $20K_{500}$, $20K_{700}$ and $20K_{900}$.

2. Experimental

2.1. Catalysts synthesis

Pulverized serpentinite samples (Pedras Congonhas Ltda) were sieved (#200) and impregnated with aqueous KOH in proportions of 0, 5, 10 and 20 wt% of potassium. The materials were dried for 24 h and thermally treated at 500, 700 or 900 °C for 3 h in air atmosphere. These catalysts are named here on as $20K_{700}$, where 20K indicates 20 wt% of K and thermal treatment at 700 °C.

2.2. Catalysts characterization

The metals (magnesium and iron) were analyzed by atomic absorption spectrometry (Hitachi-Z8200). The SEM images were obtained in a FEI Quanta 200-FEG equipment. The XRD studies were done on a Shimadzu diffractometer, model XRD-7000 with CuK α with a scan speed of 4° min $^{-1}$.

Thermogravimetric analyses (TGA) were performed in a Shimadzu DTG 60H with air flow $(50\,\mathrm{mL\,min^{-1}})$ with heating rate of $10\,^\circ\mathrm{C\,min^{-1}}$ up to $1000\,^\circ\mathrm{C}$. In order to determine the basic properties of the material $20\mathrm{K}_{700}$, a simultaneous TGA-MS (mass spectrometry) analysis was applied. The base peak (m/z=44) was selected to be monitored in a NETZSCH TG/STA equipment coupled with Aelos spectrometer, model 7.0. The catalysts were previously treated in N_2 atmosphere $(50\,\mathrm{mL\,min^{-1}})$ at $500\,^\circ\mathrm{C}$ for 1 h, followed by treatment at $50\,^\circ\mathrm{C}$ under CO_2 flow $(50\,\mathrm{mL\,min^{-1}})$ for 1 h. Then, the material was heated to $900\,^\circ\mathrm{C}$ in argon at a rate of $10\,^\circ\mathrm{C\,min^{-1}}$.

In order to determine the total basic sites, 0.5 g of the samples were dispersed in 50 mL of HCl 0.1 mol L^{-1} and 20 mL of distilled water. After 24 h of stirring, 25 mL of the solution was titrated with NaOH 0.1 mol L^{-1} and phenolphthalein as indicator.

The specific surface areas of the samples were analyzed by adsorption of N_2 at 77K using an Autosorb1-MP Quantachrome. The samples were degassed at 200 $^{\circ}$ C for 24 h before the analyses.

Please cite this article in press as: F.C. Ballotin, et al., J. Mol. Catal. A: Chem. (2016), http://dx.doi.org/10.1016/j.molcata.2016.02.006

Download English Version:

https://daneshyari.com/en/article/4757802

Download Persian Version:

https://daneshyari.com/article/4757802

<u>Daneshyari.com</u>